aboutsummaryrefslogtreecommitdiff
path: root/src/wrapper.pyx
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2019-01-15 12:14:22 +0000
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2019-01-15 12:14:22 +0000
commit5ba8b8652acd7756216552a38f4a07b049d74d4e (patch)
tree78ffa4c43bf7c2689b13e8028075e0f3e1662dc8 /src/wrapper.pyx
parentChange default coef to 1 so we have inhomogeneous poly kernel (diff)
downloadpygensvm-5ba8b8652acd7756216552a38f4a07b049d74d4e.tar.gz
pygensvm-5ba8b8652acd7756216552a38f4a07b049d74d4e.zip
Move wrapper to better folder structure
Diffstat (limited to 'src/wrapper.pyx')
-rw-r--r--src/wrapper.pyx223
1 files changed, 0 insertions, 223 deletions
diff --git a/src/wrapper.pyx b/src/wrapper.pyx
deleted file mode 100644
index 4ded637..0000000
--- a/src/wrapper.pyx
+++ /dev/null
@@ -1,223 +0,0 @@
-"""
-Wrapper for GenSVM
-
-Not implemented yet:
- - vector of instance weights
- - class weights
- - seed model
- - max_iter = -1 for unlimited
-
-"""
-
-from __future__ import print_function
-
-from libc.stdlib cimport malloc, free
-
-import numpy as np
-cimport numpy as np
-
-cimport wrapper
-
-np.import_array()
-
-GENSVM_KERNEL_TYPES = ["linear", "poly", "rbf", "sigmoid"]
-
-def train_wrap(
- np.ndarray[np.float64_t, ndim=2, mode='c'] X,
- np.ndarray[np.int_t, ndim=1, mode='c'] y,
- long n_class,
- double p=1.0,
- double lmd=pow(2, -8),
- double kappa=0.0,
- double epsilon=1e-6,
- int weight_idx=1,
- str kernel='linear',
- double gamma=1.0,
- double coef=0.0,
- double degree=2.0,
- double kernel_eigen_cutoff=1e-8,
- int max_iter=100000000,
- int random_seed=-1,
- np.ndarray[np.float64_t, ndim=2, mode='c'] seed_V=None
- ):
- """
- """
-
- # Initialize model and data
- cdef GenModel *model = gensvm_init_model()
- cdef GenData *data = gensvm_init_data()
- cdef GenModel *seed_model = gensvm_init_model()
- cdef long n_obs
- cdef long n_var
-
- # get the kernel index
- kernel_index = GENSVM_KERNEL_TYPES.index(kernel)
-
- # get the number of classes
- n_obs = X.shape[0]
- n_var = X.shape[1]
-
- # Set the data
- set_data(data, X.data, y.data, X.shape, n_class)
-
- # Set the model
- set_model(model, p, lmd, kappa, epsilon, weight_idx, kernel_index, degree,
- gamma, coef, kernel_eigen_cutoff, max_iter, random_seed)
-
- if not seed_V is None:
- set_seed_model(seed_model, p, lmd, kappa, epsilon, weight_idx,
- kernel_index, degree, gamma, coef, kernel_eigen_cutoff,
- max_iter, random_seed, seed_V.data, n_var, n_class)
- else:
- gensvm_free_model(seed_model)
- seed_model = NULL
-
- # Check the parameters
- error_msg = check_model(model)
- if error_msg:
- gensvm_free_model(model)
- free_data(data)
- error_repl = error_msg.decode('utf-8')
- raise ValueError(error_repl)
-
- # Do the actual training
- with nogil:
- gensvm_train(model, data, seed_model)
-
- # update the number of variables (this may have changed due to kernel)
- n_var = get_m(model)
-
- # copy the results
- cdef np.ndarray[np.float64_t, ndim=2, mode='c'] V
- V = np.empty((n_var+1, n_class-1))
- copy_V(V.data, model)
-
- # get other results from model
- iter_count = get_iter_count(model)
- training_error = get_training_error(model)
- fit_status = get_status(model)
- n_SV = gensvm_num_sv(model)
-
- # free model and data
- gensvm_free_model(model);
- free_data(data);
-
- return (V, n_SV, iter_count, training_error, fit_status)
-
-
-def predict_wrap(
- np.ndarray[np.float64_t, ndim=2, mode='c'] X,
- np.ndarray[np.float64_t, ndim=2, mode='c'] V
- ):
- """
- """
-
- cdef long n_test_obs
- cdef long n_var
- cdef long n_class
-
- n_test_obs = X.shape[0]
- n_var = X.shape[1]
- n_class = V.shape[1] + 1
-
- # output vector
- cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions
- predictions = np.empty((n_test_obs, ), dtype=np.int)
-
- # do the prediction
- with nogil:
- gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class,
- predictions.data)
-
- return predictions
-
-def grid_wrap(
- np.ndarray[np.float64_t, ndim=2, mode='c'] X,
- np.ndarray[np.int_t, ndim=1, mode='c'] y,
- candidate_params,
- int store_predictions,
- np.ndarray[np.int_t, ndim=1, mode='c'] cv_idx,
- int n_folds,
- ):
- """
- """
-
- cdef GenQueue *queue = gensvm_init_queue()
- cdef GenData *data = gensvm_init_data()
- cdef GenTask *task
- cdef long n_obs
- cdef long n_var
- cdef long n_class
- cdef long n_tasks = len(candidate_params)
-
- # get the number of classes
- classes = np.unique(y)
- n_obs = X.shape[0]
- n_var = X.shape[1]
- n_class = classes.shape[0]
-
- set_data(data, X.data, y.data, X.shape, n_class)
-
- cdef GenTask **tasks = <GenTask **>malloc(n_tasks * sizeof(GenTask *))
-
- ID = 0
- for candidate in candidate_params:
- params = {
- 'p': 1.0,
- 'lmd': 1e-5,
- 'kappa': 0.0,
- 'epsilon': 1e-6,
- 'weight_idx': 1,
- 'kernel': GENSVM_KERNEL_TYPES.index('linear'),
- 'gamma': 1.0,
- 'coef': 0.0,
- 'degree': 2.0,
- 'max_iter': 1e8
- }
- params.update(candidate)
- if 'kernel' in candidate:
- params['kernel'] = GENSVM_KERNEL_TYPES.index(candidate['kernel'])
- if 'weights' in candidate:
- params['weight_idx'] = 1 if candidate['weights'] == 'unit' else 2
-
- task = gensvm_init_task()
- set_task(task, ID, data, n_folds, params['p'], params['lmd'],
- params['kappa'], params['epsilon'], params['weight_idx'],
- params['kernel'], params['degree'], params['gamma'],
- params['coef'], params['max_iter'])
-
- tasks[ID] = task
- ID += 1
-
- set_queue(queue, n_tasks, tasks)
-
- with nogil:
- gensvm_train_q_helper(queue, cv_idx.data, store_predictions)
-
- cdef np.ndarray[np.int_t, ndim=1, mode='c'] pred
-
- results = dict()
- results['params'] = []
- results['duration'] = []
- results['scores'] = []
- results['predictions'] = []
- for ID in range(n_tasks):
- results['params'].append(candidate_params[ID])
- results['duration'].append(get_task_duration(tasks[ID]))
- results['scores'].append(get_task_performance(tasks[ID]))
- if store_predictions:
- pred = np.zeros((n_obs, ), dtype=np.int)
- copy_task_predictions(tasks[ID], pred.data, n_obs)
- results['predictions'].append(pred.copy())
-
- gensvm_free_queue(queue)
- free_data(data)
-
- return results
-
-
-def set_verbosity_wrap(int verbosity):
- """
- Control verbosity of gensvm library
- """
- set_verbosity(verbosity)