diff options
| author | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2019-01-15 12:14:22 +0000 |
|---|---|---|
| committer | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2019-01-15 12:14:22 +0000 |
| commit | 5ba8b8652acd7756216552a38f4a07b049d74d4e (patch) | |
| tree | 78ffa4c43bf7c2689b13e8028075e0f3e1662dc8 /src | |
| parent | Change default coef to 1 so we have inhomogeneous poly kernel (diff) | |
| download | pygensvm-5ba8b8652acd7756216552a38f4a07b049d74d4e.tar.gz pygensvm-5ba8b8652acd7756216552a38f4a07b049d74d4e.zip | |
Move wrapper to better folder structure
Diffstat (limited to 'src')
| -rw-r--r-- | src/wrapper.pxd | 136 | ||||
| -rw-r--r-- | src/wrapper.pyx | 223 |
2 files changed, 0 insertions, 359 deletions
diff --git a/src/wrapper.pxd b/src/wrapper.pxd deleted file mode 100644 index 441c15b..0000000 --- a/src/wrapper.pxd +++ /dev/null @@ -1,136 +0,0 @@ -cimport numpy as np - -# Includes - -cdef extern from "gensvm_globals.h": - # Stuff for kerneltype - ctypedef enum KernelType: - pass - -cdef extern from "gensvm_sparse.h": - # stuff for GenSparse - - cdef struct GenSparse: - long nnz - long n_row - long n_col - double *values - long *ia - long *ja - - GenSparse *gensvm_init_sparse() - void gensvm_free_sparse(GenSparse *) - -cdef extern from "gensvm_base.h": - - cdef struct GenData: - long K - long n - long m - long r - long *y - double *Z - GenSparse *spZ - double *RAW - double *Sigma - KernelType kerneltype - double *kernelparam - - cdef struct GenModel: - int weight_idx - long K - long n - long m - double epsilon - double p - double kappa - double lmd - double *V - double *Vbar - double *U - double *UU - double *Q - double *H - double *rho - double training_error - KernelType kerneltype - double *kernelparam - double kernel_eigen_cutoff - - GenModel *gensvm_init_model() - void gensvm_free_model(GenModel *) - - GenData *gensvm_init_data() - void gensvm_free_data(GenData *) - - -cdef extern from "gensvm_task.h": - - cdef struct GenTask: - long ID - long folds - GenData *train_data - GenData *test_data - - KernelType kerneltype - int weight_idx - double p - double kappa - double lmd - double epsilon - double gamma - double coef - double degree - double max_iter - - double performance - double duration - long *predictions - - GenTask *gensvm_init_task() - gensvm_free_task(GenTask *) - -cdef extern from "gensvm_train.h": - - void gensvm_train(GenModel *, GenData *, GenModel *) nogil - -cdef extern from "gensvm_sv.h": - - long gensvm_num_sv(GenModel *) - -cdef extern from "gensvm_queue.h": - - cdef struct GenQueue: - GenTask **tasks - long N - long i - - GenQueue *gensvm_init_queue() - void gensvm_free_queue(GenQueue *) - -cdef extern from "gensvm_helper.c": - - ctypedef char* char_const_ptr "char const *" - void set_model(GenModel *, double, double, double, double, int, int, - double, double, double, double, long, long) - void set_seed_model(GenModel *, double, double, double, double, int, int, - double, double, double, double, long, long, char *, long, long) - void set_data(GenData *, char *, char *, np.npy_intp *, long) - void set_task(GenTask *, int, GenData *, int, double, double, double, - double, double, int, double, double, double, long) - char_const_ptr check_model(GenModel *) - void copy_V(void *, GenModel *) - long get_iter_count(GenModel *) - double get_training_error(GenModel *) - int get_status(GenModel *) - long get_n(GenModel *) - long get_m(GenModel *) - long get_K(GenModel *) - void free_data(GenData *) - void set_verbosity(int) - void gensvm_predict(char *, char *, long, long, long, char *) nogil - void gensvm_train_q_helper(GenQueue *, char *, int) nogil - void set_queue(GenQueue *, long, GenTask **) - double get_task_duration(GenTask *) - double get_task_performance(GenTask *) - void copy_task_predictions(GenTask *, char *, long) diff --git a/src/wrapper.pyx b/src/wrapper.pyx deleted file mode 100644 index 4ded637..0000000 --- a/src/wrapper.pyx +++ /dev/null @@ -1,223 +0,0 @@ -""" -Wrapper for GenSVM - -Not implemented yet: - - vector of instance weights - - class weights - - seed model - - max_iter = -1 for unlimited - -""" - -from __future__ import print_function - -from libc.stdlib cimport malloc, free - -import numpy as np -cimport numpy as np - -cimport wrapper - -np.import_array() - -GENSVM_KERNEL_TYPES = ["linear", "poly", "rbf", "sigmoid"] - -def train_wrap( - np.ndarray[np.float64_t, ndim=2, mode='c'] X, - np.ndarray[np.int_t, ndim=1, mode='c'] y, - long n_class, - double p=1.0, - double lmd=pow(2, -8), - double kappa=0.0, - double epsilon=1e-6, - int weight_idx=1, - str kernel='linear', - double gamma=1.0, - double coef=0.0, - double degree=2.0, - double kernel_eigen_cutoff=1e-8, - int max_iter=100000000, - int random_seed=-1, - np.ndarray[np.float64_t, ndim=2, mode='c'] seed_V=None - ): - """ - """ - - # Initialize model and data - cdef GenModel *model = gensvm_init_model() - cdef GenData *data = gensvm_init_data() - cdef GenModel *seed_model = gensvm_init_model() - cdef long n_obs - cdef long n_var - - # get the kernel index - kernel_index = GENSVM_KERNEL_TYPES.index(kernel) - - # get the number of classes - n_obs = X.shape[0] - n_var = X.shape[1] - - # Set the data - set_data(data, X.data, y.data, X.shape, n_class) - - # Set the model - set_model(model, p, lmd, kappa, epsilon, weight_idx, kernel_index, degree, - gamma, coef, kernel_eigen_cutoff, max_iter, random_seed) - - if not seed_V is None: - set_seed_model(seed_model, p, lmd, kappa, epsilon, weight_idx, - kernel_index, degree, gamma, coef, kernel_eigen_cutoff, - max_iter, random_seed, seed_V.data, n_var, n_class) - else: - gensvm_free_model(seed_model) - seed_model = NULL - - # Check the parameters - error_msg = check_model(model) - if error_msg: - gensvm_free_model(model) - free_data(data) - error_repl = error_msg.decode('utf-8') - raise ValueError(error_repl) - - # Do the actual training - with nogil: - gensvm_train(model, data, seed_model) - - # update the number of variables (this may have changed due to kernel) - n_var = get_m(model) - - # copy the results - cdef np.ndarray[np.float64_t, ndim=2, mode='c'] V - V = np.empty((n_var+1, n_class-1)) - copy_V(V.data, model) - - # get other results from model - iter_count = get_iter_count(model) - training_error = get_training_error(model) - fit_status = get_status(model) - n_SV = gensvm_num_sv(model) - - # free model and data - gensvm_free_model(model); - free_data(data); - - return (V, n_SV, iter_count, training_error, fit_status) - - -def predict_wrap( - np.ndarray[np.float64_t, ndim=2, mode='c'] X, - np.ndarray[np.float64_t, ndim=2, mode='c'] V - ): - """ - """ - - cdef long n_test_obs - cdef long n_var - cdef long n_class - - n_test_obs = X.shape[0] - n_var = X.shape[1] - n_class = V.shape[1] + 1 - - # output vector - cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions - predictions = np.empty((n_test_obs, ), dtype=np.int) - - # do the prediction - with nogil: - gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class, - predictions.data) - - return predictions - -def grid_wrap( - np.ndarray[np.float64_t, ndim=2, mode='c'] X, - np.ndarray[np.int_t, ndim=1, mode='c'] y, - candidate_params, - int store_predictions, - np.ndarray[np.int_t, ndim=1, mode='c'] cv_idx, - int n_folds, - ): - """ - """ - - cdef GenQueue *queue = gensvm_init_queue() - cdef GenData *data = gensvm_init_data() - cdef GenTask *task - cdef long n_obs - cdef long n_var - cdef long n_class - cdef long n_tasks = len(candidate_params) - - # get the number of classes - classes = np.unique(y) - n_obs = X.shape[0] - n_var = X.shape[1] - n_class = classes.shape[0] - - set_data(data, X.data, y.data, X.shape, n_class) - - cdef GenTask **tasks = <GenTask **>malloc(n_tasks * sizeof(GenTask *)) - - ID = 0 - for candidate in candidate_params: - params = { - 'p': 1.0, - 'lmd': 1e-5, - 'kappa': 0.0, - 'epsilon': 1e-6, - 'weight_idx': 1, - 'kernel': GENSVM_KERNEL_TYPES.index('linear'), - 'gamma': 1.0, - 'coef': 0.0, - 'degree': 2.0, - 'max_iter': 1e8 - } - params.update(candidate) - if 'kernel' in candidate: - params['kernel'] = GENSVM_KERNEL_TYPES.index(candidate['kernel']) - if 'weights' in candidate: - params['weight_idx'] = 1 if candidate['weights'] == 'unit' else 2 - - task = gensvm_init_task() - set_task(task, ID, data, n_folds, params['p'], params['lmd'], - params['kappa'], params['epsilon'], params['weight_idx'], - params['kernel'], params['degree'], params['gamma'], - params['coef'], params['max_iter']) - - tasks[ID] = task - ID += 1 - - set_queue(queue, n_tasks, tasks) - - with nogil: - gensvm_train_q_helper(queue, cv_idx.data, store_predictions) - - cdef np.ndarray[np.int_t, ndim=1, mode='c'] pred - - results = dict() - results['params'] = [] - results['duration'] = [] - results['scores'] = [] - results['predictions'] = [] - for ID in range(n_tasks): - results['params'].append(candidate_params[ID]) - results['duration'].append(get_task_duration(tasks[ID])) - results['scores'].append(get_task_performance(tasks[ID])) - if store_predictions: - pred = np.zeros((n_obs, ), dtype=np.int) - copy_task_predictions(tasks[ID], pred.data, n_obs) - results['predictions'].append(pred.copy()) - - gensvm_free_queue(queue) - free_data(data) - - return results - - -def set_verbosity_wrap(int verbosity): - """ - Control verbosity of gensvm library - """ - set_verbosity(verbosity) |
