aboutsummaryrefslogtreecommitdiff
path: root/gensvm
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2019-12-04 12:30:19 +0000
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2019-12-04 12:30:19 +0000
commitd6e9e06edc555fdf73316b7bd222067fc8399828 (patch)
tree1d29789aeccb640a23ddc52eef2f487032d50031 /gensvm
parentUpdate submodule (diff)
downloadpygensvm-d6e9e06edc555fdf73316b7bd222067fc8399828.tar.gz
pygensvm-d6e9e06edc555fdf73316b7bd222067fc8399828.zip
Remove 'with nogil' everywhere
Don't think it's needed
Diffstat (limited to 'gensvm')
-rw-r--r--gensvm/cython_wrapper/wrapper.pyx19
1 files changed, 7 insertions, 12 deletions
diff --git a/gensvm/cython_wrapper/wrapper.pyx b/gensvm/cython_wrapper/wrapper.pyx
index 009e70b..3d7b87d 100644
--- a/gensvm/cython_wrapper/wrapper.pyx
+++ b/gensvm/cython_wrapper/wrapper.pyx
@@ -88,8 +88,7 @@ def train_wrap(
raise ValueError(error_repl)
# Do the actual training
- with nogil:
- gensvm_train(model, data, seed_model)
+ gensvm_train(model, data, seed_model)
# update the number of variables (this may have changed due to kernel)
n_var = get_m(model)
@@ -137,9 +136,8 @@ def predict_wrap(
predictions = np.empty((n_test_obs, ), dtype=np.int)
# do the prediction
- with nogil:
- gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class,
- predictions.data)
+ gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class,
+ predictions.data)
return predictions
@@ -174,10 +172,9 @@ def predict_kernels_wrap(
cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions
predictions = np.empty((n_obs_test, ), dtype=np.int)
- with nogil:
- gensvm_predict_kernels(Xtest.data, Xtrain.data, V.data, V_rows,
- V_cols, n_obs_train, n_obs_test, n_var, n_class, kernel_idx,
- gamma, coef, degree, kernel_eigen_cutoff, predictions.data)
+ gensvm_predict_kernels(Xtest.data, Xtrain.data, V.data, V_rows, V_cols,
+ n_obs_train, n_obs_test, n_var, n_class, kernel_idx, gamma, coef,
+ degree, kernel_eigen_cutoff, predictions.data)
return predictions
@@ -243,9 +240,7 @@ def grid_wrap(
set_queue(queue, n_tasks, tasks)
- with nogil:
- gensvm_train_q_helper(queue, cv_idx.data, store_predictions,
- verbosity)
+ gensvm_train_q_helper(queue, cv_idx.data, store_predictions, verbosity)
cdef np.ndarray[np.int_t, ndim=1, mode='c'] pred
cdef np.ndarray[np.double_t, ndim=1, mode='c'] dur