1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
# cython: language_level=2
"""
Wrapper for GenSVM
Not implemented yet:
- vector of instance weights
- class weights
- seed model
- max_iter = -1 for unlimited
"""
from __future__ import print_function
from libc.stdlib cimport malloc, free
import numpy as np
cimport numpy as np
cimport wrapper
np.import_array()
GENSVM_KERNEL_TYPES = ["linear", "poly", "rbf", "sigmoid"]
def train_wrap(
np.ndarray[np.float64_t, ndim=2, mode='c'] X,
np.ndarray[np.int_t, ndim=1, mode='c'] y,
long n_class,
double p=1.0,
double lmd=pow(2, -8),
double kappa=0.0,
double epsilon=1e-6,
int weight_idx=1,
np.ndarray[np.float64_t, ndim=1, mode='c'] raw_weights=None,
str kernel='linear',
double gamma=1.0,
double coef=0.0,
double degree=2.0,
double kernel_eigen_cutoff=1e-8,
int max_iter=100000000,
int random_seed=-1,
np.ndarray[np.float64_t, ndim=2, mode='c'] seed_V=None
):
"""
"""
# Initialize model and data
cdef GenModel *model = gensvm_init_model()
cdef GenData *data = gensvm_init_data()
cdef GenModel *seed_model = gensvm_init_model()
cdef long n_obs
cdef long n_var
# get the kernel index
kernel_index = GENSVM_KERNEL_TYPES.index(kernel)
# get the number of classes
n_obs = X.shape[0]
n_var = X.shape[1]
# Set the data
set_data(data, X.data, y.data, X.shape, n_class)
# Set the model
set_model(model, p, lmd, kappa, epsilon, weight_idx, kernel_index, degree,
gamma, coef, kernel_eigen_cutoff, max_iter, random_seed)
if not seed_V is None:
set_seed_model(seed_model, p, lmd, kappa, epsilon, weight_idx,
kernel_index, degree, gamma, coef, kernel_eigen_cutoff,
max_iter, random_seed, seed_V.data, n_var, n_class)
else:
gensvm_free_model(seed_model)
seed_model = NULL
if not raw_weights is None:
set_raw_weights(model, raw_weights.data, n_obs)
# Check the parameters
error_msg = check_model(model)
if error_msg:
gensvm_free_model(model)
gensvm_free_model(seed_model)
free_data(data)
error_repl = error_msg.decode('utf-8')
raise ValueError(error_repl)
# Do the actual training
with nogil:
gensvm_train(model, data, seed_model)
# update the number of variables (this may have changed due to kernel)
n_var = get_m(model)
# copy the results
cdef np.ndarray[np.float64_t, ndim=2, mode='c'] V
V = np.empty((n_var+1, n_class-1))
copy_V(V.data, model)
# get the support vectors
cdef np.ndarray[np.int32_t, ndim=1, mode='c'] SVs
SVs = np.empty((n_obs, ), dtype=np.int32)
get_SVs(model, SVs.data)
# get other results from model
iter_count = get_iter_count(model)
training_error = get_training_error(model)
fit_status = get_status(model)
# free model and data
gensvm_free_model(model);
gensvm_free_model(seed_model)
free_data(data);
return (V, SVs, iter_count, training_error, fit_status)
def predict_wrap(
np.ndarray[np.float64_t, ndim=2, mode='c'] X,
np.ndarray[np.float64_t, ndim=2, mode='c'] V
):
"""
"""
cdef long n_test_obs
cdef long n_var
cdef long n_class
n_test_obs = X.shape[0]
n_var = X.shape[1]
n_class = V.shape[1] + 1
# output vector
cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions
predictions = np.empty((n_test_obs, ), dtype=np.int)
# do the prediction
with nogil:
gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class,
predictions.data)
return predictions
def predict_kernels_wrap(
np.ndarray[np.float64_t, ndim=2, mode='c'] Xtest,
np.ndarray[np.float64_t, ndim=2, mode='c'] Xtrain,
np.ndarray[np.float64_t, ndim=2, mode='c'] V,
long n_class,
int kernel_idx,
double gamma,
double coef,
double degree,
double kernel_eigen_cutoff
):
"""
Compute predictions for nonlinear GenSVM. Calls the C helper function
"gensvm_predict_kernels", which in turn calls the appropriate library
functions.
"""
cdef long n_obs_test
cdef long n_obs_train
cdef long n_var
cdef long V_rows = V.shape[0]
cdef long V_cols = V.shape[1]
n_obs_test = Xtest.shape[0]
n_obs_train = Xtrain.shape[0]
n_var = Xtrain.shape[1]
cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions
predictions = np.empty((n_obs_test, ), dtype=np.int)
with nogil:
gensvm_predict_kernels(Xtest.data, Xtrain.data, V.data, V_rows,
V_cols, n_obs_train, n_obs_test, n_var, n_class, kernel_idx,
gamma, coef, degree, kernel_eigen_cutoff, predictions.data)
return predictions
def grid_wrap(
np.ndarray[np.float64_t, ndim=2, mode='c'] X,
np.ndarray[np.int_t, ndim=1, mode='c'] y,
candidate_params,
int store_predictions,
np.ndarray[np.int_t, ndim=1, mode='c'] cv_idx,
int n_folds,
int verbosity,
):
"""
"""
cdef GenQueue *queue = gensvm_init_queue()
cdef GenData *data = gensvm_init_data()
cdef GenTask *task
cdef long n_obs
cdef long n_var
cdef long n_class
cdef long n_tasks = len(candidate_params)
# get the number of classes
classes = np.unique(y)
n_obs = X.shape[0]
n_var = X.shape[1]
n_class = classes.shape[0]
set_data(data, X.data, y.data, X.shape, n_class)
cdef GenTask **tasks = <GenTask **>malloc(n_tasks * sizeof(GenTask *))
ID = 0
for candidate in candidate_params:
params = {
'p': 1.0,
'lmd': 1e-5,
'kappa': 0.0,
'epsilon': 1e-6,
'weight_idx': 1,
'kernel': GENSVM_KERNEL_TYPES.index('linear'),
'gamma': 1.0,
'coef': 0.0,
'degree': 2.0,
'max_iter': 1e8
}
params.update(candidate)
if 'kernel' in candidate:
params['kernel'] = GENSVM_KERNEL_TYPES.index(candidate['kernel'])
if 'weights' in candidate:
params['weight_idx'] = 1 if candidate['weights'] == 'unit' else 2
task = gensvm_init_task()
set_task(task, ID, data, n_folds, params['p'], params['lmd'],
params['kappa'], params['epsilon'], params['weight_idx'],
params['kernel'], params['degree'], params['gamma'],
params['coef'], params['max_iter'])
tasks[ID] = task
ID += 1
set_queue(queue, n_tasks, tasks)
with nogil:
gensvm_train_q_helper(queue, cv_idx.data, store_predictions,
verbosity)
cdef np.ndarray[np.int_t, ndim=1, mode='c'] pred
cdef np.ndarray[np.double_t, ndim=1, mode='c'] dur
results = dict()
results['params'] = []
results['duration'] = []
results['scores'] = []
# predictions: for each task, an array of size n_obs with class
# predictions (-1 if missing)
results['predictions'] = []
# durations: for each task, an array of size n_folds with duration for
# each fold (nan if missing)
results['durations'] = []
for ID in range(n_tasks):
results['params'].append(candidate_params[ID])
results['scores'].append(get_task_performance(tasks[ID]))
if store_predictions:
pred = np.zeros((n_obs, ), dtype=np.int)
copy_task_predictions(tasks[ID], pred.data, n_obs)
results['predictions'].append(pred.copy())
dur = np.zeros((n_folds, ), dtype=np.double)
copy_task_durations(tasks[ID], dur.data, n_folds)
results['durations'].append(dur.copy())
gensvm_free_queue(queue)
free_data(data)
return results
def set_verbosity_wrap(int verbosity):
"""
Control verbosity of gensvm library
"""
set_verbosity(verbosity)
|