aboutsummaryrefslogtreecommitdiff
path: root/R/sparsestep-package.R
blob: 303544bdf9417807a9421c9e2400c16884c148b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#' SparseStep: Approximating the Counting Norm for Sparse Regularization
#'
#' In the SparseStep regression model the ordinary least-squares problem is 
#' augmented with an approximation of the exact \eqn{\ell_0}{l[0]} pseudonorm.  
#' This approximation is made increasingly more accurate in the SparseStep 
#' algorithm, resulting in a sparse solution to the regression problem. See 
#' the references for more information.
#'
#' @section SparseStep functions:
#' The main SparseStep functions are:
#' \describe{
#' \item{\code{\link{sparsestep}}}{Fit a SparseStep model for a given range of 
#' \eqn{\lambda} values}
#' \item{\code{\link{path.sparsestep}}}{Fit the SparseStep model along a path 
#' of \eqn{\lambda} values which are generated such that a model is created at 
#' each possible level of sparsity, or until a given recursion depth is 
#' reached.}
#' }
#'
#' Other available functions are:
#' \describe{
#' \item{\code{\link{plot}}}{Plot the coefficient path of the SparseStep 
#' model.}
#' \item{\code{\link{predict}}}{Predict the outcome of the linear model using 
#' SparseStep}
#' \item{\code{\link{coef}}}{Get the coefficients from the SparseStep model}
#' \item{\code{\link{print}}}{Print a short description of the SparseStep 
#' model}
#' }
#'
#' @author
#' Gertjan van den Burg (author and maintainer).
#'
#' @name sparsestep-package
#' @docType package
#' @import Matrix
NULL
#>NULL