1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
#' @title Path algorithm for the SparseStep model
#'
#' @description Fits the entire regularization path for SparseStep using a
#' Golden Section search.
#'
#' @param x matrix of predictors
#' @param y response
#' @param max.depth maximum recursion depth
#' @param ... further arguments to sparsestep()
#'
#' @export
#'
sparsestep.path <- function(x, y, max.depth=10, intercept=TRUE,
normalize=TRUE, ...)
{
call <- match.call()
nm <- dim(x)
n <- nm[1]
m <- nm[2]
one <- rep(1, n)
if (intercept) {
meanx <- drop(one %*% x)/n
x <- scale(x, meanx, FALSE)
mu <- mean(y)
y <- drop(y - mu)
} else {
meanx <- rep(0, m)
mu <- 0
y <- drop(y)
}
if (normalize) {
normx <- sqrt(drop(one %*% (x^2)))
names(normx) <- NULL
x <- scale(x, FALSE, normx)
cat("Normalizing in path.sparsestep\n")
} else {
normx <- rep(1, m)
}
XX <- t(x) %*% x
Xy <- t(x) %*% y
iter <- 0
# First find the smallest lambda for which all coefficients are zero
lambda.max <- 2^25
fit <- NULL
while (1) {
last.fit <- fit
fit <- sparsestep(x, y, lambda=lambda.max, normalize=FALSE,
XX=XX, Xy=Xy, ...)
iter <- iter + 1
if (all(fit$beta == 0)) {
lambda.max <- lambda.max / 2
} else {
lambda.max <- lambda.max * 2
break
}
}
cat("Found maximum value of lambda: 2^(", log(lambda.max)/log(2), ")\n")
iter <- iter + 1
if (is.null(last.fit)) {
betas.max <- fit$beta
} else {
betas.max <- last.fit$beta
}
# Now find the largest lambda for which no coefficients are zero
lambda.min <- 2^-12
fit <- NULL
while (1) {
last.fit <- fit
fit <- sparsestep(x, y, lambda=lambda.min, normalize=FALSE,
XX=XX, Xy=Xy, ...)
iter <- iter + 1
if (all(fit$beta != 0)) {
lambda.min <- lambda.min * 2
} else {
lambda.min <- lambda.min / 2
break
}
}
cat("Found minimum value of lambda: 2^(", log(lambda.min)/log(2), ")\n")
iter <- iter + 1
if (is.null(last.fit)) {
betas.min <- fit$beta
} else {
betas.min <- last.fit$beta
}
# Run binary section search
have.zeros <- as.vector(matrix(FALSE, 1, m+1))
have.zeros[1] <- TRUE
have.zeros[m+1] <- TRUE
left <- log(lambda.min)/log(2)
right <- log(lambda.max)/log(2)
l <- lambda.search(x, y, 0, max.depth, have.zeros, left, right, 1,
m+1, XX, Xy, ...)
have.zeros <- have.zeros | l$have.zeros
lambdas <- c(lambda.min, l$lambdas, lambda.max)
betas <- rbind(betas.min, l$betas, betas.max)
iter <- iter + l$iter
ord <- order(lambdas)
lambdas <- lambdas[ord]
betas <- betas[ord, ]
betas <- scale(betas, FALSE, normx)
object <- list(call=call, lambdas=lambdas, betas=betas,
iterations=iter)
}
lambda.search <- function(x, y, depth, max.depth, have.zeros, left, right,
lidx, ridx, XX, Xy, ...)
{
cat("Running search in interval [", left, ",", right, "] ... \n")
nm <- dim(x)
m <- nm[2]
betas <- NULL
lambdas <- NULL
middle <- left + (right - left)/2
lambda <- 2^middle
fit <- sparsestep(x, y, lambda=lambda, normalize=FALSE, XX=XX, Xy=Xy,
...)
iter <- 1
num.zero <- length(which(fit$beta == 0))
cidx <- num.zero + 1
if (have.zeros[cidx] == FALSE) {
have.zeros[cidx] = TRUE
betas <- rbind(betas, as.vector(fit$beta))
lambdas <- c(lambdas, lambda)
}
idx <- rbind(c(lidx, cidx), c(cidx, ridx))
bnd <- rbind(c(left, middle), c(middle, right))
for (r in 1:2) {
i1 <- idx[r, 1]
i2 <- idx[r, 2]
b1 <- bnd[r, 1]
b2 <- bnd[r, 2]
if (depth < max.depth && any(have.zeros[i1:i2] == F)) {
ds <- lambda.search(x, y, depth+1, max.depth,
have.zeros, b1, b2, i1, i2, XX, Xy,
...)
have.zeros <- have.zeros | ds$have.zeros
lambdas <- c(lambdas, ds$lambdas)
betas <- rbind(betas, ds$betas)
iter <- iter + ds$iter
}
}
out <- list(have.zeros=have.zeros, lambdas=lambdas, betas=betas,
iter=iter)
return(out)
}
|