aboutsummaryrefslogtreecommitdiff
path: root/src/gensvm_wrapper.c
blob: 50d89006289887044b23be1b2c23015729eeeaaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/**
 * @file gensvm_wrapper.c
 * @author G.J.J. van den Burg
 * @date 2018-03-26
 * @brief Wrapper code for the GenSVM R package

 * Copyright (C) G.J.J. van den Burg

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation; either version 2
 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

 */

#define STRICT_R_HEADERS

#include <stdlib.h>

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Rdynload.h>
#include <R_ext/Print.h>

#include "gensvm_print.h"
#include "gensvm_train.h"
#include "gensvm_predict.h"
#include "gensvm_gridsearch.h"

// forward declarations

SEXP R_gensvm_train( SEXP R_X, SEXP R_y, SEXP R_p, SEXP R_lambda, 
		SEXP R_kappa, SEXP R_epsilon, SEXP R_weight_idx, 
		SEXP R_raw_weights, SEXP R_kernel_idx, SEXP R_gamma, 
		SEXP R_coef, SEXP R_degree, SEXP R_kernel_eigen_cutoff, 
		SEXP R_verbose, SEXP R_max_iter, SEXP R_random_seed, 
		SEXP R_seed_V, SEXP R_seed_rows, SEXP R_seed_cols, SEXP R_n, 
		SEXP R_m, SEXP R_K);
SEXP R_gensvm_predict(SEXP R_Xtest, SEXP R_V, SEXP R_n, SEXP R_m, SEXP R_K);
SEXP R_gensvm_predict_kernels(
		SEXP R_Xtest, SEXP R_Xtrain, SEXP R_V, SEXP R_V_row,
		SEXP R_V_col, SEXP R_n_train, SEXP R_n_test, SEXP R_m,
		SEXP R_K, SEXP R_kernel_idx, SEXP R_gamma, SEXP R_coef,
		SEXP R_degree, SEXP R_kernel_eigen_cutoff);
SEXP R_gensvm_plotdata_kernels(
		SEXP R_Xtest, SEXP R_Xtrain, SEXP R_V, SEXP R_V_row,
		SEXP R_V_col, SEXP R_n_train, SEXP R_n_test, SEXP R_m,
		SEXP R_K, SEXP R_kernel_idx, SEXP R_gamma, SEXP R_coef,
		SEXP R_degree, SEXP R_kernel_eigen_cutoff);

SEXP R_gensvm_grid(SEXP R_X, SEXP R_y, SEXP R_df, SEXP R_df_rows, 
		SEXP R_df_cols, SEXP R_cv_idx, SEXP R_cv_folds, SEXP R_verbosity, 
		SEXP R_n, SEXP R_m, SEXP R_K);

void _set_verbosity(int verbosity);
struct GenData *_build_gensvm_data(double *X, int *y, int n, int m, int K);

// Start R package stuff

R_CallMethodDef callMethods[] = {
	{"R_gensvm_train", (DL_FUNC) &R_gensvm_train, 22},
	{"R_gensvm_predict", (DL_FUNC) &R_gensvm_predict, 5},
	{"R_gensvm_predict_kernels", (DL_FUNC) &R_gensvm_predict_kernels, 14},
	{"R_gensvm_plotdata_kernels", (DL_FUNC) &R_gensvm_plotdata_kernels, 14},
	{"R_gensvm_grid", (DL_FUNC) &R_gensvm_grid, 11},
	{NULL, NULL, 0}
};
R_CMethodDef cMethods[] = {
	{NULL, NULL, 0}
};

void R_init_gensvm_wrapper(DllInfo *info) {
	R_registerRoutines(info, cMethods, callMethods, NULL, NULL);
	R_useDynamicSymbols(info, TRUE);
}

// End R package stuff

/**
 * @brief Set the verbosity of the GenSVM library
 *
 * @description
 * This sets the printing functions of the GenSVM library to print to the R 
 * console if desired.
 *
 * @param[in] 	verbosity 	if 0 all output is surpressed
 *
 */
void _set_verbosity(int verbosity)
{
	extern FILE *GENSVM_OUTPUT_FILE;
	extern FILE *GENSVM_ERROR_FILE;
	extern void (*gensvm_print_out)(const char *, ...);
	extern void (*gensvm_print_err)(const char *, ...);

	if (verbosity) {
		gensvm_print_out = Rprintf;
		gensvm_print_err = REprintf;
	}
	else {
		gensvm_print_out = gensvm_print_output_fpt;
		gensvm_print_err = gensvm_print_error_fpt;
		GENSVM_OUTPUT_FILE = NULL;
		GENSVM_ERROR_FILE = NULL;
	}
}


/**
 * @brief Construct a GenData struct from the given dataset
 *
 * @param[in] 	X
 * @param[in] 	y can be NULL
 * @param[in] 	n
 * @param[in] 	m
 * @param[in] 	K
 *
 * @return GenData structure
 */
struct GenData *_build_gensvm_data(double *X, int *y, int n, int m, int K)
{
	int i, j;
	double value;

	struct GenData *data = gensvm_init_data();
	data->n = n;
	data->m = m;
	data->r = m;
	data->K = K;

	data->RAW = Calloc(double, n*(m+1));

	for (i=0; i<n; i++) {
		for (j=0; j<m; j++) {
			value = matrix_get(X, n, m, i, j);
			matrix_set(data->RAW, n, m+1, i, j+1, value);
		}
		matrix_set(data->RAW, n, m+1, i, 0, 1.0);
	}
	data->Z = data->RAW;

	// convert to sparse matrix if possible
	if (gensvm_could_sparse(data->Z, n, m+1)) {
		note("Converting to sparse ... ");
		data->spZ = gensvm_dense_to_sparse(data->Z, n, m+1);
		note("done.\n");
		free(data->RAW);
		data->RAW = NULL;
		data->Z = NULL;
	}

	if (y == NULL) {
		data->y = NULL;
	} else {
		data->y = Malloc(long, n);
		for (i=0; i<n; i++)
			data->y[i] = y[i];
	}

	return data;
}

SEXP R_gensvm_train(
		SEXP R_X,
		SEXP R_y,
		SEXP R_p,
		SEXP R_lambda,
		SEXP R_kappa,
		SEXP R_epsilon,
		SEXP R_weight_idx,
		SEXP R_raw_weights,
		SEXP R_kernel_idx,
		SEXP R_gamma,
		SEXP R_coef,
		SEXP R_degree,
		SEXP R_kernel_eigen_cutoff,
		SEXP R_verbose,
		SEXP R_max_iter,
		SEXP R_random_seed,
		SEXP R_seed_V,
		SEXP R_seed_rows,
		SEXP R_seed_cols,
		SEXP R_n,
		SEXP R_m,
		SEXP R_K
		)
{
	double *X = REAL(R_X);
	int *y = INTEGER(R_y);
	double p = *REAL(R_p);
	double lambda = *REAL(R_lambda);
	double kappa = *REAL(R_kappa);
	double epsilon = *REAL(R_epsilon);
	int weight_idx = *INTEGER(R_weight_idx);
	double *raw_weights = isNull(R_raw_weights) ? NULL : REAL(R_raw_weights);
	int kernel_idx = *INTEGER(R_kernel_idx);
	double gamma = *REAL(R_gamma);
	double coef = *REAL(R_coef);
	double degree = *REAL(R_degree);
	double kernel_eigen_cutoff = *REAL(R_kernel_eigen_cutoff);
	int verbose = *INTEGER(R_verbose);
	int max_iter = *INTEGER(R_max_iter);
	int random_seed = *INTEGER(R_random_seed);
	double *seed_V = isNull(R_seed_V) ? NULL : REAL(R_seed_V);
	int seed_rows = *INTEGER(R_seed_rows);
	int seed_cols = *INTEGER(R_seed_cols);
	int n = *INTEGER(R_n);
	int m = *INTEGER(R_m);
	int K = *INTEGER(R_K);

	_set_verbosity(verbose);

	struct GenModel *model = gensvm_init_model();
	struct GenModel *seed_model = NULL;
	long i, j;
	double value;

	// Set model parameters from function input arguments
	model->n = n;
	model->m = m;
	model->K = K;
	model->p = p;
	model->lambda = lambda;
	model->kappa = kappa;
	model->epsilon = epsilon;
	model->weight_idx = weight_idx;
	model->kerneltype = kernel_idx;
	model->gamma = gamma;
	model->coef = coef;
	model->degree = degree;
	model->kernel_eigen_cutoff = kernel_eigen_cutoff;
	model->max_iter = max_iter;
	model->seed = random_seed;

	if (raw_weights != NULL) {
		model->rho = Calloc(double, n);
		for (i=0; i<n; i++) model->rho[i] = raw_weights[i];
	}

	if (seed_V != NULL) {
		seed_model = gensvm_init_model();

		seed_model->n = 0;
		seed_model->m = seed_rows - 1;
		seed_model->K = seed_cols + 1;
		gensvm_allocate_model(seed_model);

		for (i=0; i<seed_model->m+1; i++) {
			for (j=0; j<seed_model->K-1; j++) {
				matrix_set(seed_model->V, seed_model->m+1,
						seed_model->K-1, i ,j,
						matrix_get(seed_V, seed_rows,
							seed_cols, i, j));
			}
		}
	}

	struct GenData *data = _build_gensvm_data(X, y, n, m, K);

	// actually do the training
	gensvm_train(model, data, seed_model);

	// create the output list
	SEXP output = PROTECT(allocVector(VECSXP, 4));

	// create and fill output matrix
	SEXP R_V = PROTECT(allocMatrix(REALSXP, model->m+1, model->K-1));
	double *rR_V = REAL(R_V);
	for (i=0; i<model->m+1; i++) {
		for (j=0; j<model->K-1; j++) {
			value = matrix_get(model->V, model->m+1, model->K-1, 
					i, j);
			matrix_set(rR_V, model->m+1, model->K-1, i, j, value);
		}
	}

	SEXP R_iter = PROTECT(allocVector(INTSXP, 1));
	int *r_iter = INTEGER(R_iter);
	r_iter[0] = model->elapsed_iter;

	SEXP R_sv = PROTECT(allocVector(INTSXP, 1));
	int *r_sv = INTEGER(R_sv);
	r_sv[0] = gensvm_num_sv(model);

	SEXP R_time = PROTECT(allocVector(REALSXP, 1));
	double *r_time = REAL(R_time);
	r_time[0] = model->elapsed_time;

	// set output list elements
	SET_VECTOR_ELT(output, 0, R_V);
	SET_VECTOR_ELT(output, 1, R_iter);
	SET_VECTOR_ELT(output, 2, R_sv);
	SET_VECTOR_ELT(output, 3, R_time);

	// create names
	SEXP names = PROTECT(allocVector(STRSXP, 4));
	SET_STRING_ELT(names, 0, mkChar("V"));
	SET_STRING_ELT(names, 1, mkChar("n.iter"));
	SET_STRING_ELT(names, 2, mkChar("n.support"));
	SET_STRING_ELT(names, 3, mkChar("training.time"));

	// assign names to list
	setAttrib(output, R_NamesSymbol, names);

	// cleanup
	UNPROTECT(6);

	gensvm_free_model(model);
	gensvm_free_model(seed_model);
	gensvm_free_data(data);

	return output;
}

SEXP R_gensvm_predict(
		SEXP R_Xtest,
		SEXP R_V,
		SEXP R_n,
		SEXP R_m,
		SEXP R_K
		)
{
	double *X = REAL(R_Xtest);
	double *V = REAL(R_V);
	int n_test = *INTEGER(R_n);
	int m = *INTEGER(R_m);
	int K = *INTEGER(R_K);

	int i, j;
	double value;

	struct GenModel *model = gensvm_init_model();
	model->m = m;
	model->K = K;
	model->U = Calloc(double, K*(K-1));
	model->V = Calloc(double, (m+1) * (K-1));
	for (i=0; i<m+1; i++) {
		for (j=0; j<K-1; j++) {
			value = matrix_get(V, m+1, K-1, i, j);
			matrix_set(model->V, m+1, K-1, i, j, value);
		}
	}

	struct GenData *data = _build_gensvm_data(X, NULL, n_test, m, K);

	long *pred_temp = Calloc(long, n_test);

	gensvm_predict_labels(data, model, pred_temp);

	SEXP R_y = PROTECT(allocMatrix(INTSXP, n_test, 1));
	int *rR_y = INTEGER(R_y);
	for (i=0; i<n_test; i++)
		rR_y[i] = pred_temp[i];

	gensvm_free_data(data);
	gensvm_free_model(model);
	free(pred_temp);

	UNPROTECT(1);

	return(R_y);
}

SEXP R_gensvm_predict_kernels(
		SEXP R_Xtest,
		SEXP R_Xtrain,
		SEXP R_V,
		SEXP R_V_row,
		SEXP R_V_col,
		SEXP R_n_train,
		SEXP R_n_test,
		SEXP R_m,
		SEXP R_K,
		SEXP R_kernel_idx,
		SEXP R_gamma,
		SEXP R_coef,
		SEXP R_degree,
		SEXP R_kernel_eigen_cutoff
		)
{
	double *X_test = REAL(R_Xtest);
	double *X_train = REAL(R_Xtrain);
	double *V = REAL(R_V);
	int V_row = *INTEGER(R_V_row);
	int V_col = *INTEGER(R_V_col);
	int n_train = *INTEGER(R_n_train);
	int n_test = *INTEGER(R_n_test);
	int m = *INTEGER(R_m);
	int K = *INTEGER(R_K);

	int kernel_idx = *INTEGER(R_kernel_idx);
	double gamma = *REAL(R_gamma);
	double coef = *REAL(R_coef);
	double degree = *REAL(R_degree);
	double kernel_eigen_cutoff = *REAL(R_kernel_eigen_cutoff);

	int i, j;
	double value;

	struct GenModel *model = gensvm_init_model();
	model->n = n_train;
	model->m = V_row - 1;
	model->K = V_col + 1;
	model->kerneltype = kernel_idx;
	model->gamma = gamma;
	model->coef = coef;
	model->degree = degree;
	model->kernel_eigen_cutoff = kernel_eigen_cutoff;
	gensvm_allocate_model(model);

	struct GenData *traindata = _build_gensvm_data(X_train, NULL, n_train, 
			m, K);
	struct GenData *testdata = _build_gensvm_data(X_test, NULL, n_test, 
			m, K);

	gensvm_kernel_preprocess(model, traindata);
	gensvm_reallocate_model(model, traindata->n, traindata->r);

	for (i=0; i<model->m+1; i++) {
		for (j=0; j<model->K-1; j++) {
			value = matrix_get(V, V_row, V_col, i, j);
			matrix_set(model->V, model->m+1, model->K-1, i, j, 
					value);
		}
	}

	gensvm_kernel_postprocess(model, traindata, testdata);

	long *pred_temp = Calloc(long, n_test);
	gensvm_predict_labels(testdata, model, pred_temp);

	SEXP R_y = PROTECT(allocMatrix(INTSXP, n_test, 1));
	int *rR_y = INTEGER(R_y);
	for (i=0; i<n_test; i++)
		rR_y[i] = pred_temp[i];

	gensvm_free_data(traindata);
	gensvm_free_data(testdata);
	gensvm_free_model(model);
	free(pred_temp);

	UNPROTECT(1);

	return(R_y);
}

SEXP R_gensvm_plotdata_kernels(
		SEXP R_Xtest,
		SEXP R_Xtrain,
		SEXP R_V,
		SEXP R_V_row,
		SEXP R_V_col,
		SEXP R_n_train,
		SEXP R_n_test,
		SEXP R_m,
		SEXP R_K,
		SEXP R_kernel_idx,
		SEXP R_gamma,
		SEXP R_coef,
		SEXP R_degree,
		SEXP R_kernel_eigen_cutoff
		)
{
	double *X_test = REAL(R_Xtest);
	double *X_train = REAL(R_Xtrain);
	double *V = REAL(R_V);
	int V_row = *INTEGER(R_V_row);
	int V_col = *INTEGER(R_V_col);
	int n_train = *INTEGER(R_n_train);
	int n_test = *INTEGER(R_n_test);
	int m = *INTEGER(R_m);
	int K = *INTEGER(R_K);

	int kernel_idx = *INTEGER(R_kernel_idx);
	double gamma = *REAL(R_gamma);
	double coef = *REAL(R_coef);
	double degree = *REAL(R_degree);
	double kernel_eigen_cutoff = *REAL(R_kernel_eigen_cutoff);

	int i, j;
	double value;

	struct GenModel *model = gensvm_init_model();
	model->n = n_train;
	model->m = V_row - 1;
	model->K = V_col + 1;
	model->kerneltype = kernel_idx;
	model->gamma = gamma;
	model->coef = coef;
	model->degree = degree;
	model->kernel_eigen_cutoff = kernel_eigen_cutoff;
	gensvm_allocate_model(model);

	struct GenData *traindata = _build_gensvm_data(X_train, NULL, n_train, 
			m, K);
	struct GenData *testdata = _build_gensvm_data(X_test, NULL, n_test, 
			m, K);

	gensvm_kernel_preprocess(model, traindata);
	gensvm_reallocate_model(model, traindata->n, traindata->r);

	for (i=0; i<model->m+1; i++) {
		for (j=0; j<model->K-1; j++) {
			value = matrix_get(V, V_row, V_col, i, j);
			matrix_set(model->V, model->m+1, model->K-1, i, j, 
					value);
		}
	}

	gensvm_kernel_postprocess(model, traindata, testdata);

	double *ZV = Calloc(double, n_test * (K-1));
	gensvm_calculate_ZV(model, testdata, ZV);

	long *pred_temp = Calloc(long, n_test);
	gensvm_predict_labels(testdata, model, pred_temp);

	// create the output list
	SEXP output = PROTECT(allocVector(VECSXP, 2));

	// Copy predictions
	SEXP R_y = PROTECT(allocMatrix(INTSXP, n_test, 1));
	int *rR_y = INTEGER(R_y);
	for (i=0; i<n_test; i++)
		rR_y[i] = pred_temp[i];

	// Copy ZV
	SEXP R_ZV = PROTECT(allocMatrix(REALSXP, n_test, K-1));
	double *rR_ZV = REAL(R_ZV);
	for (i=0; i<n_test*(K-1); i++)
		rR_ZV[i] = ZV[i];

	SET_VECTOR_ELT(output, 0, R_y);
	SET_VECTOR_ELT(output, 1, R_ZV);

	SEXP names = PROTECT(allocVector(STRSXP, 2));
	SET_STRING_ELT(names, 0, mkChar("y.pred"));
	SET_STRING_ELT(names, 1, mkChar("ZV"));

	setAttrib(output, R_NamesSymbol, names);

	UNPROTECT(4);

	gensvm_free_data(traindata);
	gensvm_free_data(testdata);
	gensvm_free_model(model);
	free(pred_temp);
	free(ZV);

	return output;
}

SEXP R_gensvm_grid(
		SEXP R_X,
		SEXP R_y,
		SEXP R_df,
		SEXP R_df_rows,
		SEXP R_df_cols,
		SEXP R_cv_idx,
		SEXP R_cv_folds,
		SEXP R_verbosity,
		SEXP R_n,
		SEXP R_m,
		SEXP R_K
		)
{
	double *X = REAL(R_X);
	int *y = INTEGER(R_y);
	double *df = REAL(R_df);
	int df_rows = *INTEGER(R_df_rows);
	int df_cols = *INTEGER(R_df_cols);
	int *icv_idx = INTEGER(R_cv_idx);
	int folds = *INTEGER(R_cv_folds);
	int verbosity = *INTEGER(R_verbosity);
	int n = *INTEGER(R_n);
	int m = *INTEGER(R_m);
	int K = *INTEGER(R_K);

	int i, j, pred;
	long *cv_idx = NULL;
	double val, total_time;

	// set verbosity
	_set_verbosity(verbosity);

	// copy the cv_idx array
	cv_idx = Malloc(long, n);
	for (i=0; i<n; i++)
		cv_idx[i] = icv_idx[i];

	// Read the data into a GenData struct
	struct GenData *data = _build_gensvm_data(X, y, n, m, K);

	// Initialize and populate the queue
	struct GenQueue *q = gensvm_init_queue();
	q->tasks = Malloc(struct GenTask *, df_rows);
	q->N = df_rows;

	struct GenTask *t = NULL;

	for (i=0; i<df_rows; i++) {
		t = gensvm_init_task();
		t->ID = i;

		t->kerneltype = matrix_get(df, df_rows, df_cols, i, 0);
		t->coef = matrix_get(df, df_rows, df_cols, i, 1);
		t->degree = matrix_get(df, df_rows, df_cols, i, 2);
		t->gamma = matrix_get(df, df_rows, df_cols, i, 3);
		t->weight_idx = matrix_get(df, df_rows, df_cols, i, 4);
		t->kappa = matrix_get(df, df_rows, df_cols, i, 5);
		t->lambda = matrix_get(df, df_rows, df_cols, i, 6);
		t->p = matrix_get(df, df_rows, df_cols, i, 7);
		t->epsilon = matrix_get(df, df_rows, df_cols, i, 8);
		t->max_iter = matrix_get(df, df_rows, df_cols, i, 9);
		t->folds = folds;

		t->train_data = data;

		q->tasks[i] = t;
	}

	// start training
	total_time = gensvm_train_queue(q, cv_idx, true, verbosity);

	// create the output list
	SEXP output = PROTECT(allocVector(VECSXP, 3));

	// copy predictions
	SEXP R_predictions = PROTECT(allocMatrix(INTSXP, df_rows, n));
	int *rR_predictions = INTEGER(R_predictions);
	for (i=0; i<df_rows; i++) {
		t = q->tasks[i];
		if (t->predictions == NULL) { // if interrupt occurred
			for (j=0; j<n; j++)
				matrix_set(rR_predictions, df_rows, n, i, j,
						NA_INTEGER);
		} else {
			for (j=0; j<n; j++) {
				pred = t->predictions[j];
				pred = (pred == -1) ? NA_INTEGER : pred;
				matrix_set(rR_predictions, df_rows, n, i, j, 
						pred);
			}
		}
	}

	// copy durations
	SEXP R_durations = PROTECT(allocMatrix(REALSXP, df_rows, folds));
	double *rR_durations = REAL(R_durations);
	for (i=0; i<df_rows; i++) {
		t = q->tasks[i];
		if (t->durations == NULL) { // if interrupt occurred
			for (j=0; j<folds; j++) {
				matrix_set(rR_durations, df_rows, folds, i, j,
						NA_REAL);
			}
		} else {
			for (j=0; j<folds; j++) {
				val = t->durations[j];
				val = (val == -1) ? NA_REAL : val;
				matrix_set(rR_durations, df_rows, folds, i, j,
						val);
			}
		}
	}

	SEXP R_time = PROTECT(allocVector(REALSXP, 1));
	double *r_time = REAL(R_time);
	r_time[0] = total_time;

	// set output list elements
	SET_VECTOR_ELT(output, 0, R_predictions);
	SET_VECTOR_ELT(output, 1, R_durations);
	SET_VECTOR_ELT(output, 2, R_time);

	// create names
	SEXP names = PROTECT(allocVector(STRSXP, 3));
	SET_STRING_ELT(names, 0, mkChar("predictions"));
	SET_STRING_ELT(names, 1, mkChar("durations"));
	SET_STRING_ELT(names, 2, mkChar("total.time"));

	// assign names to list
	setAttrib(output, R_NamesSymbol, names);

	UNPROTECT(5);

	gensvm_free_data(data);
	gensvm_free_queue(q);

	free(cv_idx);

	return output;
}