diff options
Diffstat (limited to 'man/gensvm.train.test.split.Rd')
| -rw-r--r-- | man/gensvm.train.test.split.Rd | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/man/gensvm.train.test.split.Rd b/man/gensvm.train.test.split.Rd new file mode 100644 index 0000000..a99940f --- /dev/null +++ b/man/gensvm.train.test.split.Rd @@ -0,0 +1,62 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/gensvm.train.test.split.R +\name{gensvm.train.test.split} +\alias{gensvm.train.test.split} +\title{Create a train/test split of a dataset} +\usage{ +gensvm.train.test.split(x, y = NULL, train.size = NULL, test.size = NULL, + shuffle = TRUE, random.state = NULL, return.idx = FALSE) +} +\arguments{ +\item{x}{array to split} + +\item{y}{another array to split (typically this is a vector)} + +\item{train.size}{size of the training dataset. This can be provided as +float or as int. If it's a float, it should be between 0.0 and 1.0 and +represents the fraction of the dataset that should be placed in the training +dataset. If it's an int, it represents the exact number of samples in the +training dataset. If it is NULL, the complement of \code{test.size} will be +used.} + +\item{test.size}{size of the test dataset. Similarly to train.size both a +float or an int can be supplied. If it's NULL, the complement of train.size +will be used. If both train.size and test.size are NULL, a default test.size +of 0.25 will be used.} + +\item{shuffle}{shuffle the rows or not} + +\item{random.state}{seed for the random number generator (int)} +} +\description{ +Often it is desirable to split a dataset into a training and +testing sample. This function is included in GenSVM to make it easy to do +so. The function is inspired by a similar function in Scikit-Learn. +} +\examples{ +x <- iris[, -5] +y <- iris[, 5] + +# using the default values +split <- gensvm.train.test.split(x, y) + +# using the split in a GenSVM model +fit <- gensvm(split$x.train, split$y.train) +gensvm.accuracy(split$y.test, predict(fit, split$x.test)) + +# using attach makes the results directly available +attach(gensvm.train.test.split(x, y)) +fit <- gensvm(x.train, y.train) +gensvm.accuracy(y.test, predict(fit, x.test)) + +} +\author{ +Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr +Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com> +} +\references{ +Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized +Multiclass Support Vector Machine}, Journal of Machine Learning Research, +17(225):1--42. URL \url{http://jmlr.org/papers/v17/14-526.html}. +} + |
