aboutsummaryrefslogtreecommitdiff
path: root/R/gensvm.grid.R
diff options
context:
space:
mode:
Diffstat (limited to 'R/gensvm.grid.R')
-rw-r--r--R/gensvm.grid.R12
1 files changed, 6 insertions, 6 deletions
diff --git a/R/gensvm.grid.R b/R/gensvm.grid.R
index c541ea0..5fa026e 100644
--- a/R/gensvm.grid.R
+++ b/R/gensvm.grid.R
@@ -6,7 +6,7 @@
#' starts to speed up computation. The function uses the GenSVM C library for
#' speed.
#'
-#' @param X training data matrix. We denote the size of this matrix by
+#' @param x training data matrix. We denote the size of this matrix by
#' n_samples x n_features.
#' @param y training vector of class labes of length n_samples. The number of
#' unique labels in this vector is denoted by n_classes.
@@ -147,13 +147,13 @@
#' lambda=c(1e-8, 1e-6), max.iter=c(5000))
#' grid <- gensvm.grid(x, y, param.grid=pg, verbose=2)
#'
-gensvm.grid <- function(X, y, param.grid='tiny', refit=TRUE, scoring=NULL, cv=3,
+gensvm.grid <- function(x, y, param.grid='tiny', refit=TRUE, scoring=NULL, cv=3,
verbose=0, return.train.score=TRUE)
{
call <- match.call()
- n.objects <- nrow(X)
- n.features <- ncol(X)
+ n.objects <- nrow(x)
+ n.features <- ncol(x)
n.classes <- length(unique(y))
if (n.objects != length(y)) {
@@ -195,7 +195,7 @@ gensvm.grid <- function(X, y, param.grid='tiny', refit=TRUE, scoring=NULL, cv=3,
}
results <- .Call("R_gensvm_grid",
- as.matrix(X),
+ data.matrix(x),
as.integer(y.clean),
as.matrix(C.param.grid),
as.integer(nrow(C.param.grid)),
@@ -225,7 +225,7 @@ gensvm.grid <- function(X, y, param.grid='tiny', refit=TRUE, scoring=NULL, cv=3,
if (refit && !is.na(best.index)) {
gensvm.args <- as.list(best.params)
- gensvm.args$X <- X
+ gensvm.args$x <- x
gensvm.args$y <- y
gensvm.args$verbose <- if(verbose>1) 1 else 0
if (verbose > 1)