aboutsummaryrefslogtreecommitdiff
path: root/man
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2018-04-05 17:06:40 -0400
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2018-04-05 17:07:51 -0400
commit93f34bdd35732578cfe2a8d14562df57669b47ea (patch)
tree32f3d0b960c7e4ede2f21bd739456409f6a1c3f5 /man
parentadd cran comments to git (diff)
downloadrgensvm-93f34bdd35732578cfe2a8d14562df57669b47ea.tar.gz
rgensvm-93f34bdd35732578cfe2a8d14562df57669b47ea.zip
fix spelling
Diffstat (limited to 'man')
-rw-r--r--man/gensvm.grid.Rd4
-rw-r--r--man/gensvm.maxabs.scale.Rd2
2 files changed, 3 insertions, 3 deletions
diff --git a/man/gensvm.grid.Rd b/man/gensvm.grid.Rd
index a19b631..94cdcd5 100644
--- a/man/gensvm.grid.Rd
+++ b/man/gensvm.grid.Rd
@@ -11,7 +11,7 @@ gensvm.grid(x, y, param.grid = "tiny", refit = TRUE, scoring = NULL,
\item{x}{training data matrix. We denote the size of this matrix by
n_samples x n_features.}
-\item{y}{training vector of class labes of length n_samples. The number of
+\item{y}{training vector of class labels of length n_samples. The number of
unique labels in this vector is denoted by n_classes.}
\item{param.grid}{String (\code{'tiny'}, \code{'small'}, or \code{'full'})
@@ -70,7 +70,7 @@ the user.
}
\section{Using a Parameter Grid}{
-To evaluate certain paramater configurations, a data frame can be supplied
+To evaluate certain parameter configurations, a data frame can be supplied
to the \code{param.grid} argument of the function. Such a data frame can
easily be generated using the R function \code{expand.grid}, or could be
created through other ways to test specific parameter configurations.
diff --git a/man/gensvm.maxabs.scale.Rd b/man/gensvm.maxabs.scale.Rd
index cbbfd29..7c75eff 100644
--- a/man/gensvm.maxabs.scale.Rd
+++ b/man/gensvm.maxabs.scale.Rd
@@ -18,7 +18,7 @@ is supplied, a list with elements \code{x} and \code{x.test} representing
the scaled datasets.
}
\description{
-Scaling a dataset can creatly decrease the computation time of
+Scaling a dataset can greatly decrease the computation time of
GenSVM. This function scales the data by dividing each column of a matrix by
the maximum absolute value of that column. This preserves sparsity in the
data while mapping each column to the interval [-1, 1].