diff options
| author | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2018-04-04 15:08:12 -0400 |
|---|---|---|
| committer | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2018-04-04 15:08:12 -0400 |
| commit | 459ce96fa8a0072d3533bc2dc1566cc1b797401b (patch) | |
| tree | 229a5d9b137f7fcf3b5112e4a189e972d6dafa26 /man/gensvm.refit.Rd | |
| parent | Ensure classes isn't a factor (diff) | |
| download | rgensvm-459ce96fa8a0072d3533bc2dc1566cc1b797401b.tar.gz rgensvm-459ce96fa8a0072d3533bc2dc1566cc1b797401b.zip | |
Documentation improvements
Diffstat (limited to 'man/gensvm.refit.Rd')
| -rw-r--r-- | man/gensvm.refit.Rd | 51 |
1 files changed, 47 insertions, 4 deletions
diff --git a/man/gensvm.refit.Rd b/man/gensvm.refit.Rd index 8a711bc..cae0646 100644 --- a/man/gensvm.refit.Rd +++ b/man/gensvm.refit.Rd @@ -4,7 +4,7 @@ \alias{gensvm.refit} \title{Train an already fitted model on new data} \usage{ -gensvm.refit(fit, X, y, p = NULL, lambda = NULL, kappa = NULL, +gensvm.refit(fit, x, y, p = NULL, lambda = NULL, kappa = NULL, epsilon = NULL, weights = NULL, kernel = NULL, gamma = NULL, coef = NULL, degree = NULL, kernel.eigen.cutoff = NULL, max.iter = NULL, verbose = NULL, random.seed = NULL) @@ -12,16 +12,59 @@ gensvm.refit(fit, X, y, p = NULL, lambda = NULL, kappa = NULL, \arguments{ \item{fit}{Fitted \code{gensvm} object} -\item{X}{Data matrix of the new data} +\item{x}{Data matrix of the new data} \item{y}{Label vector of the new data} -\item{verbose}{Turn on verbose output and fit progress. If NULL (the -default) the value from the fitted model is chosen.} +\item{p}{if NULL use the value from \code{fit} in the new model, otherwise +override with this value.} + +\item{lambda}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{kappa}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{epsilon}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{weights}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{kernel}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{gamma}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{coef}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{degree}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{kernel.eigen.cutoff}{if NULL use the value from \code{fit} in the new +model, otherwise override with this value.} + +\item{max.iter}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{verbose}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} + +\item{random.seed}{if NULL use the value from \code{fit} in the new model, +otherwise override with this value.} } \value{ a new fitted \code{gensvm} model } +\description{ +This function can be used to train an existing model on new +data or fit an existing model with slightly different parameters. It is +useful for retraining without having to copy all the parameters over. One +common application for this is to refit the best model found by a grid +search, as illustrated in the examples. +} \examples{ x <- iris[, -5] y <- iris[, 5] |
