aboutsummaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2018-03-30 22:15:56 +0100
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2018-03-30 22:15:56 +0100
commit49ec439a56e55e7a6a170186c6b3d2182e4b1752 (patch)
treedd7be9941fabc3dccf60d0d17f5817ac024ed8d1 /R
parentAdd fitted() method (diff)
downloadrgensvm-49ec439a56e55e7a6a170186c6b3d2182e4b1752.tar.gz
rgensvm-49ec439a56e55e7a6a170186c6b3d2182e4b1752.zip
Add fitted for grid class
Diffstat (limited to 'R')
-rw-r--r--R/fitted.gensvm.grid.R42
1 files changed, 42 insertions, 0 deletions
diff --git a/R/fitted.gensvm.grid.R b/R/fitted.gensvm.grid.R
new file mode 100644
index 0000000..c6887c0
--- /dev/null
+++ b/R/fitted.gensvm.grid.R
@@ -0,0 +1,42 @@
+#' @title Fitted labels for the GenSVMGrid class
+#'
+#' @description Wrapper to get the fitted class labels from the best estimator
+#' of the fitted GenSVMGrid model. Only works if refit was enabled.
+#'
+#' @param grid A \code{gensvm.grid} object
+#' @param \dots further arguments are passed to fitted
+#'
+#' @return a vector of class labels, with the same type as the original class
+#' labels.
+#'
+#' @author
+#' Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr
+#' Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com>
+#'
+#' @references
+#' Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized
+#' Multiclass Support Vector Machine}, Journal of Machine Learning Research,
+#' 17(225):1--42. URL \url{http://jmlr.org/papers/v17/14-526.html}.
+#'
+#' @seealso
+#' \code{\link{plot.gensvm}}, \code{\link{predict.gensvm.grid}},
+#' \code{\link{gensvm}}, \code{\link{gensvm-package}}
+#'
+#' @export
+#' @aliases fitted
+#'
+#' @examples
+#' x <- iris[, -5]
+#' y <- iris[, 5]
+#'
+#' # fit GenSVM and compute training set predictions
+#' fit <- gensvm(x, y)
+#' yhat <- fitted(fit)
+#'
+#' # compute the accuracy with gensvm.accuracy
+#' gensvm.accuracy(y, yhat)
+#'
+fitted.gensvm.grid <- function(grid, ...)
+{
+ return(predict(grid, ...))
+}