aboutsummaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2018-04-05 15:35:57 -0400
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2018-04-05 15:35:57 -0400
commit2224f89c05a5540102101b1310e120c12d533028 (patch)
treebb5ea2d6f826cade03aa697e17f7f03d300cc475 /R
parentfix type of ZV matrix (diff)
downloadrgensvm-2224f89c05a5540102101b1310e120c12d533028.tar.gz
rgensvm-2224f89c05a5540102101b1310e120c12d533028.zip
don't run a bunch of examples to make check faster
Diffstat (limited to 'R')
-rw-r--r--R/coef.gensvm.grid.R2
-rw-r--r--R/gensvm.R4
-rw-r--r--R/gensvm.grid.R4
-rw-r--r--R/gensvm.refit.R2
-rw-r--r--R/plot.gensvm.grid.R2
-rw-r--r--R/predict.gensvm.grid.R2
-rw-r--r--R/print.gensvm.grid.R2
7 files changed, 16 insertions, 2 deletions
diff --git a/R/coef.gensvm.grid.R b/R/coef.gensvm.grid.R
index 48b2a76..f9908ba 100644
--- a/R/coef.gensvm.grid.R
+++ b/R/coef.gensvm.grid.R
@@ -26,11 +26,13 @@
#' @importFrom stats coef
#'
#' @examples
+#' \dontrun{
#' x <- iris[, -5]
#' y <- iris[, 5]
#'
#' grid <- gensvm.grid(x, y)
#' pg <- coef(grid)
+#' }
#'
coef.gensvm.grid <- function(object, ...)
{
diff --git a/R/gensvm.R b/R/gensvm.R
index c541b5a..86a15c1 100644
--- a/R/gensvm.R
+++ b/R/gensvm.R
@@ -107,8 +107,8 @@
#' fit <- gensvm(x, y, max.iter=1000)
#'
#' # Nonlinear training
-#' fit <- gensvm(x, y, kernel='rbf', max.iter=5000)
-#' fit <- gensvm(x, y, kernel='poly', degree=2, gamma=1.0, max.iter=5000)
+#' fit <- gensvm(x, y, kernel='rbf', max.iter=1000)
+#' fit <- gensvm(x, y, kernel='poly', degree=2, gamma=1.0, max.iter=1000)
#'
#' # Setting the random seed and comparing results
#' fit <- gensvm(x, y, random.seed=123)
diff --git a/R/gensvm.grid.R b/R/gensvm.grid.R
index 2bf673e..8fa187e 100644
--- a/R/gensvm.grid.R
+++ b/R/gensvm.grid.R
@@ -130,8 +130,10 @@
#' x <- iris[, -5]
#' y <- iris[, 5]
#'
+#' \dontrun{
#' # use the default parameter grid
#' grid <- gensvm.grid(x, y, verbose=TRUE)
+#' }
#'
#' # use a smaller parameter grid
#' pg <- expand.grid(p=c(1.0, 1.5, 2.0), kappa=c(-0.9, 1.0), epsilon=c(1e-3))
@@ -140,6 +142,7 @@
#' # print the result
#' print(grid)
#'
+#' \dontrun{
#' # Using a custom scoring function (accuracy as percentage)
#' acc.pct <- function(yt, yp) { return (100 * sum(yt == yp) / length(yt)) }
#' grid <- gensvm.grid(x, y, scoring=acc.pct)
@@ -148,6 +151,7 @@
#' pg <- expand.grid(kernel=c('rbf'), gamma=c(1e-2, 1e-1, 1, 1e1, 1e2),
#' lambda=c(1e-8, 1e-6), max.iter=c(5000))
#' grid <- gensvm.grid(x, y, param.grid=pg, verbose=2)
+#' }
#'
gensvm.grid <- function(x, y, param.grid='tiny', refit=TRUE, scoring=NULL, cv=3,
verbose=0, return.train.score=TRUE)
diff --git a/R/gensvm.refit.R b/R/gensvm.refit.R
index f3b818b..54040f4 100644
--- a/R/gensvm.refit.R
+++ b/R/gensvm.refit.R
@@ -60,9 +60,11 @@
#' fit <- gensvm(x, y)
#' fit2 <- gensvm.refit(fit, x, y, epsilon=1e-8)
#'
+#' \dontrun{
#' # refit a model returned by a grid search
#' grid <- gensvm.grid(x, y)
#' fit <- gensvm.refit(fit, x, y, epsilon=1e-8)
+#' }
#'
#' # refit on different data
#' idx <- runif(nrow(x)) > 0.5
diff --git a/R/plot.gensvm.grid.R b/R/plot.gensvm.grid.R
index 6a34024..c755c3c 100644
--- a/R/plot.gensvm.grid.R
+++ b/R/plot.gensvm.grid.R
@@ -25,11 +25,13 @@
#' @export
#'
#' @examples
+#' \dontrun{
#' x <- iris[, -5]
#' y <- iris[, 5]
#'
#' grid <- gensvm.grid(x, y)
#' plot(grid, x)
+#' }
#'
plot.gensvm.grid <- function(x, ...)
{
diff --git a/R/predict.gensvm.grid.R b/R/predict.gensvm.grid.R
index acc838f..d6f5e06 100644
--- a/R/predict.gensvm.grid.R
+++ b/R/predict.gensvm.grid.R
@@ -35,6 +35,7 @@
#' @importFrom stats predict
#'
#' @examples
+#' \dontrun{
#' x <- iris[, -5]
#' y <- iris[, 5]
#'
@@ -43,6 +44,7 @@
#'
#' # predict training sample
#' y.hat <- predict(grid, x)
+#' }
#'
predict.gensvm.grid <- function(object, newdata, ...)
{
diff --git a/R/print.gensvm.grid.R b/R/print.gensvm.grid.R
index 3e1bb69..d0755ca 100644
--- a/R/print.gensvm.grid.R
+++ b/R/print.gensvm.grid.R
@@ -25,12 +25,14 @@
#' @export
#'
#' @examples
+#' \dontrun{
#' x <- iris[, -5]
#' y <- iris[, 5]
#'
#' # fit a grid search and print the resulting object
#' grid <- gensvm.grid(x, y)
#' print(grid)
+#' }
#'
print.gensvm.grid <- function(x, ...)
{