aboutsummaryrefslogtreecommitdiff
path: root/R/print.gensvm.R
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2018-04-04 15:06:33 -0400
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2018-04-04 15:06:33 -0400
commitde17a6d755e9369a91abdb06562ee93d7b323bbd (patch)
treecbede010da1046ee6627143aa0e41d8ec0fbb09e /R/print.gensvm.R
parentAdd importFrom statements (diff)
downloadrgensvm-de17a6d755e9369a91abdb06562ee93d7b323bbd.tar.gz
rgensvm-de17a6d755e9369a91abdb06562ee93d7b323bbd.zip
Adhere to generic function signatures
Diffstat (limited to 'R/print.gensvm.R')
-rw-r--r--R/print.gensvm.R58
1 files changed, 29 insertions, 29 deletions
diff --git a/R/print.gensvm.R b/R/print.gensvm.R
index 724806b..54397da 100644
--- a/R/print.gensvm.R
+++ b/R/print.gensvm.R
@@ -2,7 +2,7 @@
#'
#' @description Prints a short description of the fitted GenSVM model
#'
-#' @param fit A \code{gensvm} object to print
+#' @param x A \code{gensvm} object to print
#' @param \dots further arguments are ignored
#'
#' @return returns the object passed as input. This can be useful for chaining
@@ -36,41 +36,41 @@
#' fit <- gensvm(x, y)
#' predict(print(fit), x)
#'
-print.gensvm <- function(fit, ...)
+print.gensvm <- function(x, ...)
{
cat("Data:\n")
- cat("\tn.objects:", fit$n.objects, "\n")
- cat("\tn.features:", fit$n.features, "\n")
- cat("\tn.classes:", fit$n.classes, "\n")
- if (is.factor(fit$classes))
- cat("\tclasses:", levels(fit$classes), "\n")
+ cat("\tn.objects:", x$n.objects, "\n")
+ cat("\tn.features:", x$n.features, "\n")
+ cat("\tn.classes:", x$n.classes, "\n")
+ if (is.factor(x$classes))
+ cat("\tclasses:", levels(x$classes), "\n")
else
- cat("\tclasses:", fit$classes, "\n")
+ cat("\tclasses:", x$classes, "\n")
cat("Parameters:\n")
- cat("\tp:", fit$p, "\n")
- cat("\tlambda:", fit$lambda, "\n")
- cat("\tkappa:", fit$kappa, "\n")
- cat("\tepsilon:", fit$epsilon, "\n")
- cat("\tweights:", fit$weights, "\n")
- cat("\tmax.iter:", fit$max.iter, "\n")
- cat("\trandom.seed:", fit$random.seed, "\n")
- if (is.factor(fit$kernel)) {
- cat("\tkernel:", levels(fit$kernel)[as.numeric(fit$kernel)], "\n")
+ cat("\tp:", x$p, "\n")
+ cat("\tlambda:", x$lambda, "\n")
+ cat("\tkappa:", x$kappa, "\n")
+ cat("\tepsilon:", x$epsilon, "\n")
+ cat("\tweights:", x$weights, "\n")
+ cat("\tmax.iter:", x$max.iter, "\n")
+ cat("\trandom.seed:", x$random.seed, "\n")
+ if (is.factor(x$kernel)) {
+ cat("\tkernel:", levels(x$kernel)[as.numeric(x$kernel)], "\n")
} else {
- cat("\tkernel:", fit$kernel, "\n")
+ cat("\tkernel:", x$kernel, "\n")
}
- if (fit$kernel %in% c("poly", "rbf", "sigmoid")) {
- cat("\tkernel.eigen.cutoff:", fit$kernel.eigen.cutoff, "\n")
- cat("\tgamma:", fit$gamma, "\n")
+ if (x$kernel %in% c("poly", "rbf", "sigmoid")) {
+ cat("\tkernel.eigen.cutoff:", x$kernel.eigen.cutoff, "\n")
+ cat("\tgamma:", x$gamma, "\n")
}
- if (fit$kernel %in% c("poly", "sigmoid"))
- cat("\tcoef:", fit$coef, "\n")
- if (fit$kernel == 'poly')
- cat("\tdegree:", fit$degree, "\n")
+ if (x$kernel %in% c("poly", "sigmoid"))
+ cat("\tcoef:", x$coef, "\n")
+ if (x$kernel == 'poly')
+ cat("\tdegree:", x$degree, "\n")
cat("Results:\n")
- cat("\ttime:", fit$training.time, "\n")
- cat("\tn.iter:", fit$n.iter, "\n")
- cat("\tn.support:", fit$n.support, "\n")
+ cat("\ttime:", x$training.time, "\n")
+ cat("\tn.iter:", x$n.iter, "\n")
+ cat("\tn.support:", x$n.support, "\n")
- invisible(fit)
+ invisible(x)
}