aboutsummaryrefslogtreecommitdiff
path: root/R/plot.gensvm.grid.R
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2018-03-27 12:31:28 +0100
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2018-03-27 12:31:28 +0100
commit004941896bac692d354c41a3334d20ee1d4627f7 (patch)
tree2b11e42d8524843409e2bf8deb4ceb74c8b69347 /R/plot.gensvm.grid.R
parentupdates to GenSVM C library (diff)
downloadrgensvm-004941896bac692d354c41a3334d20ee1d4627f7.tar.gz
rgensvm-004941896bac692d354c41a3334d20ee1d4627f7.zip
GenSVM R package
Diffstat (limited to 'R/plot.gensvm.grid.R')
-rw-r--r--R/plot.gensvm.grid.R39
1 files changed, 39 insertions, 0 deletions
diff --git a/R/plot.gensvm.grid.R b/R/plot.gensvm.grid.R
new file mode 100644
index 0000000..da101e6
--- /dev/null
+++ b/R/plot.gensvm.grid.R
@@ -0,0 +1,39 @@
+#' @title Plot the simplex space of the best fitted model in the GenSVMGrid
+#'
+#' @description This is a wrapper which calls the plot function for the best
+#' model in the provided GenSVMGrid object. See the documentation for
+#' \code{\link{plot.gensvm}} for more information.
+#'
+#' @param grid A \code{gensvm.grid} object trained with refit=TRUE
+#' @param x the dataset to plot
+#' @param ... further arguments are passed to the plot function
+#'
+#' @return returns the object passed as input
+#'
+#' @export
+#'
+#' @author
+#' Gerrit J.J. van den Burg, Patrick J.F. Groenen \cr
+#' Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com>
+#'
+#' @references
+#' Van den Burg, G.J.J. and Groenen, P.J.F. (2016). \emph{GenSVM: A Generalized
+#' Multiclass Support Vector Machine}, Journal of Machine Learning Research,
+#' 17(225):1--42. URL \url{http://jmlr.org/papers/v17/14-526.html}.
+#'
+#' @examples
+#' x <- iris[, -5]
+#' y <- iris[, 5]
+#'
+#' grid <- gensvm.grid(x, y)
+#' plot(grid, x)
+#'
+plot.gensvm.grid <- function(grid, x, ...)
+{
+ if (is.null(grid$best.estimator)) {
+ cat("Error: Can't plot, the best.estimator element is NULL\n")
+ return
+ }
+ fit <- grid$best.estimator
+ return(plot(fit, x, ...))
+}