diff options
| author | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2018-04-04 15:08:12 -0400 |
|---|---|---|
| committer | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2018-04-04 15:08:12 -0400 |
| commit | 459ce96fa8a0072d3533bc2dc1566cc1b797401b (patch) | |
| tree | 229a5d9b137f7fcf3b5112e4a189e972d6dafa26 /R/gensvm.refit.R | |
| parent | Ensure classes isn't a factor (diff) | |
| download | rgensvm-459ce96fa8a0072d3533bc2dc1566cc1b797401b.tar.gz rgensvm-459ce96fa8a0072d3533bc2dc1566cc1b797401b.zip | |
Documentation improvements
Diffstat (limited to 'R/gensvm.refit.R')
| -rw-r--r-- | R/gensvm.refit.R | 44 |
1 files changed, 34 insertions, 10 deletions
diff --git a/R/gensvm.refit.R b/R/gensvm.refit.R index b7a1a15..f3b818b 100644 --- a/R/gensvm.refit.R +++ b/R/gensvm.refit.R @@ -1,16 +1,40 @@ #' @title Train an already fitted model on new data #' -#' @title This function can be used to train an existing model on new data or -#' fit an existing model with slightly different parameters. It is useful for -#' retraining without having to copy all the parameters over. One common -#' application for this is to refit the best model found by a grid search, as -#' illustrated in the examples. +#' @description This function can be used to train an existing model on new +#' data or fit an existing model with slightly different parameters. It is +#' useful for retraining without having to copy all the parameters over. One +#' common application for this is to refit the best model found by a grid +#' search, as illustrated in the examples. #' #' @param fit Fitted \code{gensvm} object -#' @param X Data matrix of the new data +#' @param x Data matrix of the new data #' @param y Label vector of the new data -#' @param verbose Turn on verbose output and fit progress. If NULL (the -#' default) the value from the fitted model is chosen. +#' @param p if NULL use the value from \code{fit} in the new model, otherwise +#' override with this value. +#' @param lambda if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param kappa if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param epsilon if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param weights if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param kernel if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param gamma if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param coef if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param degree if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param kernel.eigen.cutoff if NULL use the value from \code{fit} in the new +#' model, otherwise override with this value. +#' @param max.iter if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param verbose if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. +#' @param random.seed if NULL use the value from \code{fit} in the new model, +#' otherwise override with this value. #' #' @return a new fitted \code{gensvm} model #' @@ -50,7 +74,7 @@ #' fit1 <- gensvm(x1, y1) #' fit2 <- gensvm.refit(fit1, x2, y2) #' -gensvm.refit <- function(fit, X, y, p=NULL, lambda=NULL, kappa=NULL, +gensvm.refit <- function(fit, x, y, p=NULL, lambda=NULL, kappa=NULL, epsilon=NULL, weights=NULL, kernel=NULL, gamma=NULL, coef=NULL, degree=NULL, kernel.eigen.cutoff=NULL, max.iter=NULL, verbose=NULL, random.seed=NULL) @@ -76,7 +100,7 @@ gensvm.refit <- function(fit, X, y, p=NULL, lambda=NULL, kappa=NULL, # after the call to gensvm(). errfunc <- getOption('error') options(error=function() {}) - newfit <- gensvm(X, y, p=p, lambda=lambda, kappa=kappa, epsilon=epsilon, + newfit <- gensvm(x, y, p=p, lambda=lambda, kappa=kappa, epsilon=epsilon, weights=weights, kernel=kernel, gamma=gamma, coef=coef, degree=degree, kernel.eigen.cutoff=kernel.eigen.cutoff, verbose=verbose, max.iter=max.iter, seed.V=coef(fit)) |
