aboutsummaryrefslogtreecommitdiff
path: root/R/gensvm-kernels.R
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2018-02-09 16:34:57 +0000
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2018-02-09 16:34:57 +0000
commit381266b57b48e8005099b4ea5762d08455c2e5ba (patch)
tree904fd9c0fa37ec30791a2dd5644f1fd67c5515b7 /R/gensvm-kernels.R
downloadrgensvm-381266b57b48e8005099b4ea5762d08455c2e5ba.tar.gz
rgensvm-381266b57b48e8005099b4ea5762d08455c2e5ba.zip
initial commit
Diffstat (limited to 'R/gensvm-kernels.R')
-rw-r--r--R/gensvm-kernels.R10
1 files changed, 10 insertions, 0 deletions
diff --git a/R/gensvm-kernels.R b/R/gensvm-kernels.R
new file mode 100644
index 0000000..8e445c0
--- /dev/null
+++ b/R/gensvm-kernels.R
@@ -0,0 +1,10 @@
+#' Kernels in GenSVM
+#'
+#' GenSVM can be used for both linear multiclass support vector machine
+#' classification and for nonlinear classification with kernels. In general,
+#' linear classification will be faster but depending on the dataset higher
+#' classification performance can be achieved using a nonlinear kernel.
+#'
+#' The following nonlinear kernels are implemented in the GenSVM package:
+#' \describe{
+#' \item{RBF}{The Radial Basis Function kernel is a commonly used kernel.