aboutsummaryrefslogtreecommitdiff
path: root/gensvm/cython_wrapper/wrapper.pyx
blob: 085810341212ce503841443dbcd121385445286b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# cython: language_level=2

"""
Wrapper for GenSVM

Not implemented yet:
    - vector of instance weights
    - class weights
    - seed model
    - max_iter = -1 for unlimited

"""

from __future__ import print_function

from libc.stdlib cimport malloc, free

import numpy as np
cimport numpy as np

cimport wrapper

np.import_array()

GENSVM_KERNEL_TYPES = ["linear", "poly", "rbf", "sigmoid"]

def train_wrap(
        np.ndarray[np.float64_t, ndim=2, mode='c'] X,
        np.ndarray[np.int_t, ndim=1, mode='c'] y,
        long n_class,
        double p=1.0,
        double lmd=pow(2, -8),
        double kappa=0.0,
        double epsilon=1e-6,
        int weight_idx=1,
        np.ndarray[np.float64_t, ndim=1, mode='c'] raw_weights=None,
        str kernel='linear',
        double gamma=1.0,
        double coef=0.0,
        double degree=2.0,
        double kernel_eigen_cutoff=1e-8,
        int max_iter=100000000,
        int random_seed=-1,
        np.ndarray[np.float64_t, ndim=2, mode='c'] seed_V=None
        ):
    """
    """

    # Initialize model and data
    cdef GenModel *model = gensvm_init_model()
    cdef GenData *data = gensvm_init_data()
    cdef GenModel *seed_model = gensvm_init_model()
    cdef long n_obs
    cdef long n_var

    # get the kernel index
    kernel_index = GENSVM_KERNEL_TYPES.index(kernel)

    # get the number of classes
    n_obs = X.shape[0]
    n_var = X.shape[1]

    # Set the data
    set_data(data, X.data, y.data, X.shape, n_class)

    # Set the model
    set_model(model, p, lmd, kappa, epsilon, weight_idx, kernel_index, degree, 
            gamma, coef, kernel_eigen_cutoff, max_iter, random_seed)

    if not seed_V is None:
        set_seed_model(seed_model, p, lmd, kappa, epsilon, weight_idx, 
                kernel_index, degree, gamma, coef, kernel_eigen_cutoff, 
                max_iter, random_seed, seed_V.data, n_var, n_class)
    else:
        gensvm_free_model(seed_model)
        seed_model = NULL

    if not raw_weights is None:
        set_raw_weights(model, raw_weights.data, n_obs)

    # Check the parameters
    error_msg = check_model(model)
    if error_msg:
        gensvm_free_model(model)
        gensvm_free_model(seed_model)
        free_data(data)
        error_repl = error_msg.decode('utf-8')
        raise ValueError(error_repl)

    # Do the actual training
    with nogil:
        gensvm_train(model, data, seed_model)

    # update the number of variables (this may have changed due to kernel)
    n_var = get_m(model)

    # copy the results
    cdef np.ndarray[np.float64_t, ndim=2, mode='c'] V
    V = np.empty((n_var+1, n_class-1))
    copy_V(V.data, model)

    # get other results from model
    iter_count = get_iter_count(model)
    training_error = get_training_error(model)
    fit_status = get_status(model)
    n_SV = gensvm_num_sv(model)

    # free model and data
    gensvm_free_model(model);
    gensvm_free_model(seed_model)
    free_data(data);

    return (V, n_SV, iter_count, training_error, fit_status)


def predict_wrap(
        np.ndarray[np.float64_t, ndim=2, mode='c'] X,
        np.ndarray[np.float64_t, ndim=2, mode='c'] V
        ):
    """
    """

    cdef long n_test_obs
    cdef long n_var
    cdef long n_class

    n_test_obs = X.shape[0]
    n_var = X.shape[1]
    n_class = V.shape[1] + 1

    # output vector
    cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions
    predictions = np.empty((n_test_obs, ), dtype=np.int)

    # do the prediction
    with nogil:
        gensvm_predict(X.data, V.data, n_test_obs, n_var, n_class, 
                predictions.data)

    return predictions


def predict_kernels_wrap(
        np.ndarray[np.float64_t, ndim=2, mode='c'] Xtest,
        np.ndarray[np.float64_t, ndim=2, mode='c'] Xtrain,
        np.ndarray[np.float64_t, ndim=2, mode='c'] V,
        long n_class,
        int kernel_idx,
        double gamma,
        double coef,
        double degree,
        double kernel_eigen_cutoff
        ):
    """
    Compute predictions for nonlinear GenSVM. Calls the C helper function 
    "gensvm_predict_kernels", which in turn calls the appropriate library 
    functions.
    """

    cdef long n_obs_test
    cdef long n_obs_train
    cdef long n_var
    cdef long V_rows = V.shape[0]
    cdef long V_cols = V.shape[1]

    n_obs_test = Xtest.shape[0]
    n_obs_train = Xtrain.shape[0]
    n_var = Xtrain.shape[1]

    cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions
    predictions = np.empty((n_obs_test, ), dtype=np.int)

    with nogil:
        gensvm_predict_kernels(Xtest.data, Xtrain.data, V.data, V_rows, 
                V_cols, n_obs_train, n_obs_test, n_var, n_class, kernel_idx, 
                gamma, coef, degree, kernel_eigen_cutoff, predictions.data)

    return predictions


def grid_wrap(
        np.ndarray[np.float64_t, ndim=2, mode='c'] X,
        np.ndarray[np.int_t, ndim=1, mode='c'] y,
        candidate_params,
        int store_predictions,
        np.ndarray[np.int_t, ndim=1, mode='c'] cv_idx,
        int n_folds,
        int verbosity,
        ):
    """
    """

    cdef GenQueue *queue = gensvm_init_queue()
    cdef GenData *data = gensvm_init_data()
    cdef GenTask *task
    cdef long n_obs
    cdef long n_var
    cdef long n_class
    cdef long n_tasks = len(candidate_params)

    # get the number of classes
    classes = np.unique(y)
    n_obs = X.shape[0]
    n_var = X.shape[1]
    n_class = classes.shape[0]

    set_data(data, X.data, y.data, X.shape, n_class)

    cdef GenTask **tasks = <GenTask **>malloc(n_tasks * sizeof(GenTask *))

    ID = 0
    for candidate in candidate_params:
        params = {
                'p': 1.0,
                'lmd': 1e-5,
                'kappa': 0.0,
                'epsilon': 1e-6,
                'weight_idx': 1,
                'kernel': GENSVM_KERNEL_TYPES.index('linear'),
                'gamma': 1.0,
                'coef': 0.0,
                'degree': 2.0,
                'max_iter': 1e8
                }
        params.update(candidate)
        if 'kernel' in candidate:
            params['kernel'] = GENSVM_KERNEL_TYPES.index(candidate['kernel'])
        if 'weights' in candidate:
            params['weight_idx'] = 1 if candidate['weights'] == 'unit' else 2

        task = gensvm_init_task()
        set_task(task, ID, data, n_folds, params['p'], params['lmd'], 
                params['kappa'], params['epsilon'], params['weight_idx'], 
                params['kernel'], params['degree'], params['gamma'], 
                params['coef'], params['max_iter'])

        tasks[ID] = task
        ID += 1

    set_queue(queue, n_tasks, tasks)

    with nogil:
        gensvm_train_q_helper(queue, cv_idx.data, store_predictions, 
                verbosity)

    cdef np.ndarray[np.int_t, ndim=1, mode='c'] pred
    cdef np.ndarray[np.double_t, ndim=1, mode='c'] dur

    results = dict()
    results['params'] = []
    results['duration'] = []
    results['scores'] = []
    # predictions: for each task, an array of size n_obs with class 
    # predictions (-1 if missing)
    results['predictions'] = []
    # durations: for each task, an array of size n_folds with duration for 
    # each fold (nan if missing)
    results['durations'] = []
    for ID in range(n_tasks):
        results['params'].append(candidate_params[ID])
        results['scores'].append(get_task_performance(tasks[ID]))
        if store_predictions:
            pred = np.zeros((n_obs, ), dtype=np.int)
            copy_task_predictions(tasks[ID], pred.data, n_obs)
            results['predictions'].append(pred.copy())
        dur = np.zeros((n_folds, ), dtype=np.double)
        copy_task_durations(tasks[ID], dur.data, n_folds)
        results['durations'].append(dur.copy())

    gensvm_free_queue(queue)
    free_data(data)

    return results


def set_verbosity_wrap(int verbosity):
    """
    Control verbosity of gensvm library
    """
    set_verbosity(verbosity)