aboutsummaryrefslogtreecommitdiff
path: root/docs/cls_gensvm.txt
diff options
context:
space:
mode:
Diffstat (limited to 'docs/cls_gensvm.txt')
-rw-r--r--docs/cls_gensvm.txt139
1 files changed, 0 insertions, 139 deletions
diff --git a/docs/cls_gensvm.txt b/docs/cls_gensvm.txt
deleted file mode 100644
index b4bc9a7..0000000
--- a/docs/cls_gensvm.txt
+++ /dev/null
@@ -1,139 +0,0 @@
-
-.. py:class:: GenSVM(p=1.0, lmd=1e-05, kappa=0.0, epsilon=1e-06, weights='unit', kernel='linear', gamma='auto', coef=1.0, degree=2.0, kernel_eigen_cutoff=1e-08, verbose=0, random_state=None, max_iter=100000000.0)
- :noindex:
- :module: gensvm.core
-
- Generalized Multiclass Support Vector Machine Classification.
-
- This class implements the basic GenSVM classifier. GenSVM is a generalized
- multiclass SVM which is flexible in the weighting of misclassification
- errors. It is this flexibility that makes it perform well on diverse
- datasets.
-
- The :func:`~GenSVM.fit` and :func:`~GenSVM.predict` methods of this class
- use the GenSVM C library for the actual computations.
-
- :param p: Parameter for the L_p norm of the loss function (1.0 <= p <= 2.0)
- :type p: float, optional (default=1.0)
- :param lmd: Parameter for the regularization term of the loss function (lmd > 0)
- :type lmd: float, optional (default=1e-5)
- :param kappa: Parameter for the hinge function in the loss function (kappa > -1.0)
- :type kappa: float, optional (default=0.0)
- :param weights: Type of sample weights to use. Options are 'unit' for unit weights and
- 'group' for group size correction weights (equation 4 in the paper).
-
- It is also possible to provide an explicit vector of sample weights
- through the :func:`~GenSVM.fit` method. If so, it will override the
- setting provided here.
- :type weights: string, optional (default='unit')
- :param kernel: Specify the kernel type to use in the classifier. It must be one of
- 'linear', 'poly', 'rbf', or 'sigmoid'.
- :type kernel: string, optional (default='linear')
- :param gamma: Kernel parameter for the rbf, poly, and sigmoid kernel. If gamma is
- 'auto' then 1/n_features will be used. See `Kernels in GenSVM
- <gensvm_kernels_>`_ for the exact implementation of the kernels.
- :type gamma: float, optional (default='auto')
- :param coef: Kernel parameter for the poly and sigmoid kernel. See `Kernels in
- GenSVM <gensvm_kernels_>`_ for the exact implementation of the kernels.
- :type coef: float, optional (default=1.0)
- :param degree: Kernel parameter for the poly kernel. See `Kernels in GenSVM
- <gensvm_kernels_>`_ for the exact implementation of the kernels.
- :type degree: float, optional (default=2.0)
- :param kernel_eigen_cutoff: Cutoff point for the reduced eigendecomposition used with nonlinear
- GenSVM. Eigenvectors for which the ratio between their corresponding
- eigenvalue and the largest eigenvalue is smaller than the cutoff will
- be dropped.
- :type kernel_eigen_cutoff: float, optional (default=1e-8)
- :param verbose: Enable verbose output
- :type verbose: int, (default=0)
- :param random_state: The seed for the random number generation used for initialization where
- necessary. See the documentation of
- ``sklearn.utils.check_random_state`` for more info.
- :type random_state: None, int, instance of RandomState
- :param max_iter: The maximum number of iterations to be run.
- :type max_iter: int, (default=1e8)
-
- .. attribute:: coef_
-
- *array, shape = [n_features, n_classes-1]* -- Weights assigned to the features (coefficients in the primal problem)
-
- .. attribute:: intercept_
-
- *array, shape = [n_classes-1]* -- Constants in the decision function
-
- .. attribute:: combined_coef_
-
- *array, shape = [n_features+1, n_classes-1]* -- Combined weights matrix for the seed_V parameter to the fit method
-
- .. attribute:: n_iter_
-
- *int* -- The number of iterations that were run during training.
-
- .. attribute:: n_support_
-
- *int* -- The number of support vectors that were found
-
- .. attribute:: SVs_
-
- *array, shape = [n_observations, ]* -- Index vector that marks the support vectors (1 = SV, 0 = no SV)
-
- .. seealso::
-
- :class:`.GenSVMGridSearchCV`
- Helper class to run an efficient grid search for GenSVM.
-
- .. _gensvm_kernels:
- https://gensvm.readthedocs.io/en/latest/#kernels-in-gensvm
-
-
-
- .. py:method:: GenSVM.fit(X, y, sample_weight=None, seed_V=None)
- :noindex:
- :module: gensvm.core
-
- Fit the GenSVM model on the given data
-
- The model can be fit with or without a seed matrix (``seed_V``). This
- can be used to provide warm starts for the algorithm.
-
- :param X: The input data. It is expected that only numeric data is given.
- :type X: array, shape = (n_observations, n_features)
- :param y: The label vector, labels can be numbers or strings.
- :type y: array, shape = (n_observations, )
- :param sample_weight: Array of weights that are assigned to individual samples. If not
- provided, then the weight specification in the constructor is used
- ('unit' or 'group').
- :type sample_weight: array, shape = (n_observations, )
- :param seed_V: Seed coefficient array to use as a warm start for the optimization.
- It can for instance be the :attr:`combined_coef_
- <.GenSVM.combined_coef_>` attribute of a different GenSVM model.
- This is only supported for the linear kernel.
-
- NOTE: the size of the seed_V matrix is ``n_features+1`` by
- ``n_classes - 1``. The number of columns of ``seed_V`` is leading
- for the number of classes in the model. For example, if ``y``
- contains 3 different classes and ``seed_V`` has 3 columns, we
- assume that there are actually 4 classes in the problem but one
- class is just represented in this training data. This can be useful
- for problems were a certain class has only a few samples.
- :type seed_V: array, shape = (n_features+1, n_classes-1), optional
-
- :returns: **self** -- Returns self.
- :rtype: object
-
-
- .. py:method:: GenSVM.predict(X, trainX=None)
- :noindex:
- :module: gensvm.core
-
- Predict the class labels on the given data
-
- :param X: Data for which to predict the labels
- :type X: array, shape = [n_test_samples, n_features]
- :param trainX: Only for nonlinear prediction with kernels: the training data used
- to train the model.
- :type trainX: array, shape = [n_train_samples, n_features]
-
- :returns: **y_pred** -- Predicted class labels of the data in X.
- :rtype: array, shape = (n_samples, )
-