aboutsummaryrefslogtreecommitdiff
path: root/docs/cls_gensvm.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/cls_gensvm.rst')
-rw-r--r--docs/cls_gensvm.rst21
1 files changed, 14 insertions, 7 deletions
diff --git a/docs/cls_gensvm.rst b/docs/cls_gensvm.rst
index 4e67631..fc19bf4 100644
--- a/docs/cls_gensvm.rst
+++ b/docs/cls_gensvm.rst
@@ -26,16 +26,19 @@
'linear', 'poly', 'rbf', or 'sigmoid'.
:type kernel: string, optional (default='linear')
:param gamma: Kernel parameter for the rbf, poly, and sigmoid kernel. If gamma is
- 'auto' then 1/n_features will be used.
+ 'auto' then 1/n_features will be used. See `Kernels in GenSVM
+ <gensvm_kernels_>`_ for the exact implementation of the kernels.
:type gamma: float, optional (default='auto')
- :param coef: Kernel parameter for the poly and sigmoid kernel
+ :param coef: Kernel parameter for the poly and sigmoid kernel. See `Kernels in
+ GenSVM <gensvm_kernels_>`_ for the exact implementation of the kernels.
:type coef: float, optional (default=0.0)
- :param degree: Kernel parameter for the poly kernel
+ :param degree: Kernel parameter for the poly kernel. See `Kernels in GenSVM
+ <gensvm_kernels_>`_ for the exact implementation of the kernels.
:type degree: float, optional (default=2.0)
- :param kernel_eigen_cutoff: Cutoff point for the reduced eigendecomposition used with
- kernel-GenSVM. Eigenvectors for which the ratio between their
- corresponding eigenvalue and the largest eigenvalue is smaller than the
- cutoff will be dropped.
+ :param kernel_eigen_cutoff: Cutoff point for the reduced eigendecomposition used with nonlinear
+ GenSVM. Eigenvectors for which the ratio between their corresponding
+ eigenvalue and the largest eigenvalue is smaller than the cutoff will
+ be dropped.
:type kernel_eigen_cutoff: float, optional (default=1e-8)
:param verbose: Enable verbose output
:type verbose: int, (default=0)
@@ -67,6 +70,10 @@
:class:`.GenSVMGridSearchCV`
Helper class to run an efficient grid search for GenSVM.
+ .. _gensvm_kernels:
+ https://gensvm.readthedocs.io/en/latest/#kernels-in-gensvm
+
+
.. py:method:: GenSVM.fit(X, y, seed_V=None)
:noindex: