diff options
| author | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2019-01-15 14:52:55 +0000 |
|---|---|---|
| committer | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2019-01-15 14:52:55 +0000 |
| commit | f695999cb24a91b39b14e48c03b28aec78bb95c1 (patch) | |
| tree | 457c3026659ecaab11e7e92b02c4f0d559daa0f0 /gensvm/cython_wrapper | |
| parent | Document the random_state argument (diff) | |
| download | pygensvm-f695999cb24a91b39b14e48c03b28aec78bb95c1.tar.gz pygensvm-f695999cb24a91b39b14e48c03b28aec78bb95c1.zip | |
Add code for prediction with kernels
Diffstat (limited to 'gensvm/cython_wrapper')
| -rw-r--r-- | gensvm/cython_wrapper/wrapper.pxd | 2 | ||||
| -rw-r--r-- | gensvm/cython_wrapper/wrapper.pyx | 39 |
2 files changed, 41 insertions, 0 deletions
diff --git a/gensvm/cython_wrapper/wrapper.pxd b/gensvm/cython_wrapper/wrapper.pxd index 441c15b..6a896aa 100644 --- a/gensvm/cython_wrapper/wrapper.pxd +++ b/gensvm/cython_wrapper/wrapper.pxd @@ -129,6 +129,8 @@ cdef extern from "gensvm_helper.c": void free_data(GenData *) void set_verbosity(int) void gensvm_predict(char *, char *, long, long, long, char *) nogil + void gensvm_predict_kernels(char *, char *, char *, long, long, long, + long, long, long, int, double, double, double, double, char *) nogil void gensvm_train_q_helper(GenQueue *, char *, int) nogil void set_queue(GenQueue *, long, GenTask **) double get_task_duration(GenTask *) diff --git a/gensvm/cython_wrapper/wrapper.pyx b/gensvm/cython_wrapper/wrapper.pyx index 6d5bbae..e138620 100644 --- a/gensvm/cython_wrapper/wrapper.pyx +++ b/gensvm/cython_wrapper/wrapper.pyx @@ -133,6 +133,45 @@ def predict_wrap( return predictions + +def predict_kernels_wrap( + np.ndarray[np.float64_t, ndim=2, mode='c'] Xtest, + np.ndarray[np.float64_t, ndim=2, mode='c'] Xtrain, + np.ndarray[np.float64_t, ndim=2, mode='c'] V, + long n_class, + int kernel_idx, + double gamma, + double coef, + double degree, + double kernel_eigen_cutoff + ): + """ + Compute predictions for nonlinear GenSVM. Calls the C helper function + "gensvm_predict_kernels", which in turn calls the appropriate library + functions. + """ + + cdef long n_obs_test + cdef long n_obs_train + cdef long n_var + cdef long V_rows = V.shape[0] + cdef long V_cols = V.shape[1] + + n_obs_test = Xtest.shape[0] + n_obs_train = Xtrain.shape[0] + n_var = Xtrain.shape[1] + + cdef np.ndarray[np.int_t, ndim=1, mode='c'] predictions + predictions = np.empty((n_obs_test, ), dtype=np.int) + + with nogil: + gensvm_predict_kernels(Xtest.data, Xtrain.data, V.data, V_rows, + V_cols, n_obs_train, n_obs_test, n_var, n_class, kernel_idx, + gamma, coef, degree, kernel_eigen_cutoff, predictions.data) + + return predictions + + def grid_wrap( np.ndarray[np.float64_t, ndim=2, mode='c'] X, np.ndarray[np.int_t, ndim=1, mode='c'] y, |
