diff options
| author | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2017-10-07 15:39:12 +0200 |
|---|---|---|
| committer | Gertjan van den Burg <gertjanvandenburg@gmail.com> | 2017-10-07 15:39:12 +0200 |
| commit | 3179373ad91245d8712c97be5add387d1b8e2304 (patch) | |
| tree | a622b0d73a3b8306a2674a2a4d975700d7183dbc /gensvm/core.py | |
| parent | rearrange and update setup.py (diff) | |
| download | pygensvm-3179373ad91245d8712c97be5add387d1b8e2304.tar.gz pygensvm-3179373ad91245d8712c97be5add387d1b8e2304.zip | |
give the wrapper a better name
Diffstat (limited to 'gensvm/core.py')
| -rw-r--r-- | gensvm/core.py | 190 |
1 files changed, 190 insertions, 0 deletions
diff --git a/gensvm/core.py b/gensvm/core.py new file mode 100644 index 0000000..7594eba --- /dev/null +++ b/gensvm/core.py @@ -0,0 +1,190 @@ +# -*- coding: utf-8 -*- + +""" +""" + +from __future__ import print_function, division + +import numpy as np +import warnings + +from sklearn.base import BaseEstimator +from sklearn.exceptions import ConvergenceWarning, FitFailedWarning +from sklearn.preprocessing import LabelEncoder +from sklearn.utils import check_X_y, check_random_state +from sklearn.utils.multiclass import type_of_target +from sklearn.utils.validation import check_is_fitted + +from . import wrapper + + +def _fit_gensvm(X, y, p, lmd, kappa, epsilon, weight_idx, kernel, gamma, coef, + degree, kernel_eigen_cutoff, verbose, max_iter, random_state=None): + + # process the random state + rnd = check_random_state(random_state) + + # set the verbosity in GenSVM + wrapper.set_verbosity_wrap(verbose) + + # run the actual training + raw_coef_, n_SV_, n_iter_, training_error_, status_ = wrapper.train_wrap( + X, y, p, lmd, kappa, epsilon, weight_idx, kernel, gamma, coef, + degree, kernel_eigen_cutoff, max_iter, + rnd.randint(np.iinfo('i').max)) + + # process output + if status_ == 1 and verbose > 0: + warnings.warn("GenSVM optimization prematurely ended due to a " + "incorrect step in the optimization algorithm.", + FitFailedWarning) + + if status_ == 2 and verbose > 0: + warnings.warn("GenSVM failed to converge, increase " + "the number of iterations.", ConvergenceWarning) + + coef_ = raw_coef_[1:, :] + intercept_ = raw_coef_[0, :] + + return coef_, intercept_, n_iter_, n_SV_ + + +class GenSVM(BaseEstimator): + """Generalized Multiclass Support Vector Machine Classification. + + This class implements the basic GenSVM classifier. GenSVM is a generalized + multiclass SVM which is flexible in the weighting of misclassification + errors. It is this flexibility that makes it perform well on diverse + datasets. + + This methods of this class use the GenSVM C library for the actual + computations. + + Parameters + ---------- + p : float, optional (default=1.0) + Parameter for the L_p norm of the loss function (1.0 <= p <= 2.0) + + lmd : float, optional (default=1e-5) + Parameter for the regularization term of the loss function (lmd > 0) + + kappa : float, optional (default=0.0) + Parameter for the hinge function in the loss function (kappa > -1.0) + + weight_idx : int, optional (default=1) + Type of sample weights to use (1 = unit weights, 2 = size correction + weights) + + kernel : string, optional (default='linear') + Specify the kernel type to use in the classifier. It must be one of + 'linear', 'poly', 'rbf', or 'sigmoid'. + + gamma : float, optional (default=1.0) + Kernel parameter for the rbf, poly, and sigmoid kernel + + coef : float, optional (default=0.0) + Kernel parameter for the poly and sigmoid kernel + + degree : float, optional (default=2.0) + Kernel parameter for the poly kernel + + kernel_eigen_cutoff : float, optional (default=1e-8) + Cutoff point for the reduced eigendecomposition used with + kernel-GenSVM. Eigenvectors for which the ratio between their + corresponding eigenvalue and the largest eigenvalue is smaller than the + cutoff will be dropped. + + verbose : int, (default=0) + Enable verbose output + + max_iter : int, (default=1e8) + The maximum number of iterations to be run. + + + Attributes + ---------- + coef_ : array, shape = [n_features, n_classes-1] + Weights assigned to the features (coefficients in the primal problem) + + intercept_ : array, shape = [n_classes] + Constants in the decision function + + n_iter_ : int + The number of iterations that were run during training. + + n_support_ : int + The number of support vectors that were found + + + References + ---------- + * Van den Burg, G.J.J. and Groenen, P.J.F.. GenSVM: A Generalized + Multiclass Support Vector Machine. Journal of Machine Learning Research, + 17(225):1--42, 2016. + + """ + + def __init__(self, p=1.0, lmd=1e-5, kappa=0.0, epsilon=1e-6, weight_idx=1, + kernel='linear', gamma=1.0, coef=0.0, degree=2.0, + kernel_eigen_cutoff=1e-8, verbose=0, random_state=None, + max_iter=1e8): + self.p = p + self.lmd = lmd + self.kappa = kappa + self.epsilon = epsilon + self.weight_idx = weight_idx + self.kernel = kernel + self.gamma = gamma + self.coef = coef + self.degree = degree + self.kernel_eigen_cutoff = kernel_eigen_cutoff + self.verbose = verbose + self.random_state = random_state + self.max_iter = max_iter + + + def fit(self, X, y): + if not 1.0 <= self.p <= 2.0: + raise ValueError("Value for p should be within [1, 2]; got p = %r)" + % self.p) + if not self.kappa > -1.0: + raise ValueError("Value for kappa should be larger than -1; got " + "kappa = %r" % self.kappa) + if not self.lmd > 0: + raise ValueError("Value for lmd should be larger than 0; got " + "lmd = %r" % self.lmd) + if not self.epsilon > 0: + raise ValueError("Value for epsilon should be larger than 0; got " + "epsilon = %r" % self.epsilon) + X, y_org = check_X_y(X, y, accept_sparse=False, dtype=np.float64, + order="C") + + y_type = type_of_target(y_org) + if y_type not in ["binary", "multiclass"]: + raise ValueError("Label type not allowed for GenSVM: %r" % y_type) + + # This is necessary because GenSVM expects classes to go from 1 to + # n_class + self.encoder = LabelEncoder() + y = self.encoder.fit_transform(y_org) + y += 1 + + self.coef_, self.intercept_, self.n_iter_, self.n_support_ = \ + _fit_gensvm(X, y, self.p, self.lmd, self.kappa, self.epsilon, + self.weight_idx, self.kernel, self.gamma, self.coef, + self.degree, self.kernel_eigen_cutoff, self.verbose, + self.max_iter, self.random_state) + return self + + + def predict(self, X): + check_is_fitted(self, "coef_") + + V = np.vstack((self.intercept_, self.coef_)) + predictions = wrapper.predict_wrap(X, V) + + # Transform the classes back to the original form + predictions -= 1 + outcome = self.encoder.inverse_transform(predictions) + + return outcome |
