aboutsummaryrefslogtreecommitdiff
path: root/tests/src/test_gensvm_pred.c
blob: 13f0e5a9ca4a5096e6b33c9e872e4bf5532e63c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/**
 * @file test_gensvm_pred.c
 * @author Gertjan van den Burg
 * @date September, 2016
 * @brief Unit tests for gensvm_pred.c functions
 */
#include "minunit.h"
#include "gensvm_pred.h"

/**
 * This testcase is designed as follows: 12 evenly spaced points are plotted 
 * on the unit circle in the simplex space. These points are the ones for 
 * which we want to predict the class. To get these points, we need a Z and a 
 * V which map to these points. To get this, Z was equal to [1 Q] and V was 
 * equal to [0; R] where Q and R are from the reduced QR decomposition of the 
 * 12x2 matrix S which contains the points in simplex space. Here's the 
 * Matlab/Octave code to generate this data:
 *
 *     n = 12;
 *     K = 3;
 *     S = [cos(1/12*pi+1/6*pi*[0:(n-1)])', sin(1/12*pi+1/6*pi*[0:(n-1)])'];
 *     [Q, R] = qr(S, '0');
 *     Z = [ones(n, 1), Q];
 *     V = [zeros(1, K-1); R];
 *
 */
char *test_gensvm_predict_labels()
{
	int n = 12;
	int m = 2;
	int K = 3;

	struct GenData *data = gensvm_init_data();
	struct GenModel *model = gensvm_init_model();

	model->n = n;
	model->m = m;
	model->K = K;

	data->n = n;
	data->m = m;
	data->r = m;
	data->K = K;

	data->Z = Calloc(double, n*(m+1));
	data->y = Calloc(long, n);

	matrix_set(data->Z, m+1, 0, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 0, 1, -0.3943375672974065);
	matrix_set(data->Z, m+1, 0, 2, -0.1056624327025935);
	matrix_set(data->Z, m+1, 1, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 1, 1, -0.2886751345948129);
	matrix_set(data->Z, m+1, 1, 2, -0.2886751345948128);
	matrix_set(data->Z, m+1, 2, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 2, 1, -0.1056624327025937);
	matrix_set(data->Z, m+1, 2, 2, -0.3943375672974063);
	matrix_set(data->Z, m+1, 3, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 3, 1, 0.1056624327025935);
	matrix_set(data->Z, m+1, 3, 2, -0.3943375672974064);
	matrix_set(data->Z, m+1, 4, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 4, 1, 0.2886751345948129);
	matrix_set(data->Z, m+1, 4, 2, -0.2886751345948129);
	matrix_set(data->Z, m+1, 5, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 5, 1, 0.3943375672974064);
	matrix_set(data->Z, m+1, 5, 2, -0.1056624327025937);
	matrix_set(data->Z, m+1, 6, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 6, 1, 0.3943375672974065);
	matrix_set(data->Z, m+1, 6, 2, 0.1056624327025935);
	matrix_set(data->Z, m+1, 7, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 7, 1, 0.2886751345948130);
	matrix_set(data->Z, m+1, 7, 2, 0.2886751345948128);
	matrix_set(data->Z, m+1, 8, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 8, 1, 0.1056624327025939);
	matrix_set(data->Z, m+1, 8, 2, 0.3943375672974063);
	matrix_set(data->Z, m+1, 9, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 9, 1, -0.1056624327025934);
	matrix_set(data->Z, m+1, 9, 2, 0.3943375672974064);
	matrix_set(data->Z, m+1, 10, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 10, 1, -0.2886751345948126);
	matrix_set(data->Z, m+1, 10, 2, 0.2886751345948132);
	matrix_set(data->Z, m+1, 11, 0, 1.0000000000000000);
	matrix_set(data->Z, m+1, 11, 1, -0.3943375672974064);
	matrix_set(data->Z, m+1, 11, 2, 0.1056624327025939);

	gensvm_allocate_model(model);

	matrix_set(model->V, K-1, 0, 0, 0.0000000000000000);
	matrix_set(model->V, K-1, 0, 1, 0.0000000000000000);
	matrix_set(model->V, K-1, 1, 0, -2.4494897427831779);
	matrix_set(model->V, K-1, 1, 1, -0.0000000000000002);
	matrix_set(model->V, K-1, 2, 0, 0.0000000000000000);
	matrix_set(model->V, K-1, 2, 1, -2.4494897427831783);

	// start test code
	long *predy = Calloc(long, n);
	gensvm_predict_labels(data, model, predy);

	mu_assert(predy[0] == 2, "Incorrect label at index 0");
	mu_assert(predy[1] == 3, "Incorrect label at index 1");
	mu_assert(predy[2] == 3, "Incorrect label at index 2");
	mu_assert(predy[3] == 3, "Incorrect label at index 3");
	mu_assert(predy[4] == 3, "Incorrect label at index 4");
	mu_assert(predy[5] == 1, "Incorrect label at index 5");
	mu_assert(predy[6] == 1, "Incorrect label at index 6");
	mu_assert(predy[7] == 1, "Incorrect label at index 7");
	mu_assert(predy[8] == 1, "Incorrect label at index 8");
	mu_assert(predy[9] == 2, "Incorrect label at index 9");
	mu_assert(predy[10] == 2, "Incorrect label at index 10");
	mu_assert(predy[11] == 2, "Incorrect label at index 11");

	// end test code
	gensvm_free_data(data);
	gensvm_free_model(model);
	free(predy);

	return NULL;
}

char *test_gensvm_prediction_perf()
{
	int i, n = 8;
	struct GenData *data = gensvm_init_data();
	data->n = n;
	data->y = Calloc(long, n);
	data->y[0] = 1;
	data->y[1] = 1;
	data->y[2] = 1;
	data->y[3] = 1;
	data->y[4] = 2;
	data->y[5] = 2;
	data->y[6] = 2;
	data->y[7] = 3;

	long *y = Calloc(long, n);
	for (i=0; i<n; i++)
		y[i] = 1;
	mu_assert(gensvm_prediction_perf(data, y) == 50.0,
			"Incorrect first time.");

	for (i=0; i<n; i++)
		y[i] = 2;
	mu_assert(gensvm_prediction_perf(data, y) == 37.5,
			"Incorrect second time.");

	for (i=0; i<n; i++)
		y[i] = 3;
	mu_assert(gensvm_prediction_perf(data, y) == 12.5,
			"Incorrect third time.");

	free(y);
	gensvm_free_data(data);

	return NULL;
}

char *all_tests()
{
	mu_suite_start();
	mu_run_test(test_gensvm_predict_labels);
	mu_run_test(test_gensvm_prediction_perf);

	return NULL;
}

RUN_TESTS(all_tests);