1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
function newV = update_test
rand('state', 2190382);
more off;
n = 8;
m = 3;
K = 3;
p = 1.1;
lambda = 0.123;
kappa = 0.5;
y = [ 2 1 3 2 3 3 1 2]';
U = SimplexGen(K);
UU = zeros(n, K-1, K);
for jj=1:K
UU(:, :, jj) = U(y, :) - U(jj*ones(n, 1), :);
end
R = zeros(n, K);
I = eye(K);
for i=1:n
R(i, :) = I(y(i, :), :);
end
R = ~logical(R);
Z = [ones(n, 1), -1 + 2 * rand(n, m)];
V = -1 + 2 * rand(m+1, K-1);
rho = ones(n, 1);
V
newV = getUpdate(Z, y, rho, p, kappa, lambda, UU, R, V, false);
end
function set_vector(a)
for i=1:numel(a)
fprintf('A[%i] = %.16f;\n', i-1, a(i));
end
end
function set_matrix(A)
for i=1:size(A, 1)
for j=1:size(A, 2)
fprintf('matrix_set(A, %i, %i, %i, %.16f);\n', size(A, 2), i-1, j-1, A(i, j));
end
end
end
% From the original Matlab implementation
function [newV, oldL] = getUpdate(Z, y, rho, p, kappa, lambda, UU, R, V, debug)
% Initialize constants
[n, m] = size(Z);
m = m - 1;
[~, K] = size(R);
% Calculate initial errors
ZV = Z*V;
q = zeros(n, K);
for jj = 1:K
q(:, jj) = sum(ZV.*UU(:,:,jj), 2);
end
% Calculate Huber hinge errors
G1 = (q <= -kappa);
G2 = (q <= 1) & (~G1);
H = (1 - q - (kappa+1)/2).*G1 + (1/(2*kappa + 2))*((1 - q).^2).*G2;
% Split objects in Category 1 and 2
C = sum((H.*R)>0, 2)<=1;
C1i = find(C>0); % for some reason this is faster than C==1
C2i = find(C<1); % for some reason this is faster than C==0
% We are going to do the calculations separately for each category (1,2)
% so we separate all important variables as well.
Q1 = q(C1i, :);
Q2 = q(C2i, :);
R1 = R(C1i, :);
R2 = R(C2i, :);
P1 = rho(C1i, :);
P2 = rho(C2i, :);
y1 = y(C1i, :);
H1 = H(C1i, :);
H2 = H(C2i, :);
ZV1 = ZV(C1i, :);
ZV2 = ZV(C2i, :);
UU1 = UU(C1i, :, :);
UU2 = UU(C2i, :, :);
n1 = length(y1);
n2 = n - n1;
%% First create all matrices for the Case 1 objects.
if debug
% Check the first majorization of the Case 1 objects.
TT1 = sum((H1.^p).*R1,2).^(1/p);
TT2 = sum(H1.*R1,2);
if abs(sum(TT1) - sum(TT2))/n1 > eps
fprintf('\tFirst Case 1: diff = %15.16f\n', abs(sum(TT1) - sum(TT2))/n1);
end
end
% First do the majorization for the Case 1 objects (p = 1 in Huber maj.)
G1 = (Q1 <=-kappa);
G2 = (Q1 <= 1) & (~G1);
G3 = ~(G1|G2);
% calculate dummy variables
Phi = 1 - Q1 - (kappa + 1)/2;
Psi = (1 - Q1)/sqrt(2*kappa + 2);
iPhi = 1./Phi;
a1 = 1/4*iPhi.*(G1 - G3) + (1/(2*kappa + 2))*G2;
a1(isnan(a1)) = 0; % necessary because Inf*0 = NaN and we need 0
b1 = a1.*Q1 + 1/2*G1 + ((Psi.^2)./(1 - Q1)).*G2;
B1 = zeros(n1, K-1);
for jj=1:K
B1 = B1 + ((b1(:, jj) - (a1(:, jj).*Q1(:, jj)))*ones(1, K-1)).*UU1(:,:,jj);
end
if debug
% constant terms in quadratic majorization
c1 = a1.*(Q1.^2) + (1-kappa)/2*G1 + ...
((Psi.^2).*(1 + 2.*Q1./(1 - Q1))).*G2;
TT1 = a1.*(Q1.^2) - 2*b1.*Q1 + c1;
TT2 = H1;
D = sum(sum(abs(TT1 - TT2)))/n1;
if D > eps
fprintf('\tSecond Case 1: diff = %15.16f\n', D);
end
% Case 1 constant terms in total majorization
Gamma1 = 1/n * sum(P1.*sum(c1.*R1,2));
Gamma1 = Gamma1 + 1/n * sum(P1.*sum(ZV1.^2,2).*sum(a1.*R1,2));
Gamma1 = Gamma1 - 1/n * sum(P1.*sum(a1.*(Q1.^2).*R1,2));
clear c1 TT1 TT2 D
end
%% Now create all matrices for the Case 2 objects.
% We can now safely delete a number of matrices from memory
clear G1 G2 G3 Phi Psi iPhi b1
G1a = (Q2 <= (p+kappa-1)/(p-2));
G2a = (Q2 <= 1)&(~G1a);
G3a = ~(G1a|G2a);
G1b = (Q2 <= -kappa);
G2b = (Q2 <= 1) & (~G1b);
G3b = ~(G1b|G2b);
Phi = 1 - Q2 - (kappa+1)/2;
Psi = (1 - Q2)/sqrt(2*kappa + 2);
if p~=2
Chi = (p*Q2 + kappa - 1)/(p - 2);
end
omega = (1/p)*(sum((H2.^p).*R2,2)).^(1/p - 1);
if debug
% First majorization test (p-th root)
TT1 = sum((H2.^p).*R2,2).^(1/p);
TT2 = omega.*sum((H2.^p).*R2,2) + (1 - 1/p)*(sum((H2.^p).*R2,2)).^(1/p);
D = sum(abs(TT1 - TT2))/n2;
if D > eps
fprintf('\tFirst Case 2: diff = %15.16f\n', D);
end
end
% Some parameters are different when p = 2, we recognize this here.
if p~=2
a2 = (1/4 * p^2 * Phi.^(p-2)).*G1a + ...
(1/4 * p * (2*p - 1) * ((kappa+1)/2)^(p-2)).*G2a + ...
(1/4 * p^2 * (p*Phi/(p-2)).^(p-2)).*G3a;
a2(isnan(a2)) = 0; % We need Inf*0 = 0.
else
a2 = 3/2*ones(n2, K);
end
b2 = (a2.*Q2 + 1/2*p*(Phi.^(p-1))).*G1b + ...
(a2.*Q2 + p*(Psi.^(2*p))./(1 - Q2)).*G2b;
if p~=2
b2 = b2 + (a2.*Chi + 1/2*p*(p*Phi/(p-2)).^(p-1)).*G3b;
else
b2 = b2 + 3/2*Q2.*G3b;
end
B2 = zeros(n2, K-1);
for jj=1:K
B2 = B2 + ((b2(:, jj) - (a2(:, jj).*Q2(:, jj)))*ones(1, K-1)).*UU2(:,:,jj);
end
if debug
c2 = (a2.*(Q2.^2) + Phi.^p + p*Q2.*(Phi.^(p-1))).*G1b + ...
(a2.*(Q2.^2) + (Psi.^(2*p)).*(1 + (2*p*Q2)./(1 - Q2))).*G2b;
if p~=2
c2 = c2 + (a2.*(Chi.^2) + p*Chi.*(p*Phi/(p - 2)).^(p-1) + (p*Phi/(p-2)).^p).*G3b;
else
c2 = c2 + 3/2*(Q2.^2).*G3b;
end
TT1 = a2.*(Q2.^2) - 2*b2.*Q2 + c2;
TT2 = H2.^p;
D = sum(sum(abs(TT1 - TT2)))/n2;
if D>eps
fprintf('\tSecond Case 2: diff = %15.16f\n', D);
end
% Case 2 constant terms in majorization
Gamma2 = 1/n * (1 - 1/p) * sum(P2.*(sum((H2.^p).*R2,2).^(1/p)));
Gamma2 = Gamma2 + 1/n * sum(P2.*omega.*sum(c2.*R2,2));
Gamma2 = Gamma2 + 1/n * sum(P2.*omega.*sum(ZV2.^2,2).*sum(a2.*R2,2));
Gamma2 = Gamma2 - 1/n * sum(P2.*omega.*sum((Q2.^2).*a2,2));
end
%% Collect the two classes in a single matrix and calculate update
A(C1i, :) = P1.*sum(a1.*R1,2);
A(C2i, :) = P2.*omega.*sum(a2.*R2,2);
B(C1i, :) = (P1*ones(1, K-1)).*B1;
B(C2i, :) = ((P2.*omega)*ones(1, K-1)).*B2;
A = 1/n*A;
B = 1/n*B;
J = eye(m+1); J(1,1) = 0;
ZAZ = Z'*((A*ones(1, m+1)).*Z);
newV = (ZAZ + lambda*J)\(ZAZ*V + Z'*B);
%% temp
lhs = ZAZ + lambda*J;
rhs = ZAZ*V + Z'*B;
fprintf("lhs:\n");
disp(lhs);
fprintf("rhs:\n");
disp(rhs);
fprintf("newV:\n");
disp(newV);
%% endtemp
if debug
oldL = trace((V - 2*V)'*Z'*diag(A)*Z*V) - 2*trace(B'*Z*V) + Gamma1 + ...
Gamma2 + lambda*trace(V'*J*V);
else
oldL = 0;
end
end
function U = SimplexGen(K)
U = zeros(K, K-1);
for ii=1:K
for jj=1:K-1
if ii<=jj
U(ii,jj) = -1/sqrt(2*(jj^2 + jj));
elseif ii==jj+1
U(ii,jj) = jj/sqrt(2*(jj^2 + jj));
end
end
end
end
|