1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
% % MSVMMaj: Multiclass SVM using Iterative Majorization and Huber hinge
% % errors.
function [W, t] = msvmmaj(X, y, varargin)
% Initialize variable arguments
numvarargs = length(varargin);
MAXARGS = 8;
if numvarargs > MAXARGS
error('msvmmaj:TooManyInputArguments', ...
'At most %d arguments allowed', MAXARGS);
end
optargs = {ones(length(y),1), ... % rho
1.0, ... % p
0.5, ... % kappa
2^(-3), ... % lambda
3e-10, ... % epsilon
'show', ... % mode
0, ... % debug
[], ... % seedV
};
optargs(1:numvarargs) = varargin;
[rho, p, kappa, lambda, epsilon, mode, debug_mode, seedV] = optargs{:};
% Initialize constants
[n, m] = size(X);
% fix labels makes the labels in y consecutive integers.
[y, K] = fix_labels(y);
% Lets perform a sanity check here for labels
if (K ~= max(y))
error('msvmmaj:InputError', ...
'Label error, please check input.');
end
% Initialize common matrices
Z = [ones(n, 1) X];
U = SimplexGen(K);
R = categorymat(y, K);
if ~isempty(seedV)
if isequal(size(seedV), [m+1, K-1])
V = seedV;
else
V = rand(m+1, K-1);
end
else
V = rand(m+1, K-1);
end
% Initialize the UU 3d matrix. Each of the K sheets contains the
% differences between one of the K categories and the class label
% of an object.
UU = zeros(n, K-1, K);
for jj=1:K
UU(:, :, jj) = U(y, :) - U(jj*ones(n,1), :);
end
L = getLoss(Z, y, rho, p, kappa, lambda, UU, R, V);
Lbar = L + 2.0*epsilon*L;
it = 0;
fprintf("L = %15.16f\tLbar = %15.16f\n", L, Lbar);
while (it == 0 || (Lbar - L)/L > epsilon)
[newV, oldL] = getUpdate(Z, y, rho, p, kappa, lambda, UU, R, V, debug_mode);
if debug_mode
fprintf('\tOldLoss error: diff = %15.16f\n', abs(L - oldL));
end
% use step doubling after a short burn in
if (it > 50)
newV = 2*newV - V;
end
Lbar = L;
L = getLoss(Z, y, rho, p, kappa, lambda, UU, R, newV);
if (rem(it, 1) == 0 && strcmp(mode, 'show'))
fprintf('%i %15.16f %15.16f %15.16f\n', it, L, Lbar, (Lbar - L)/L);
end
V = newV;
it = it + 1;
end
t = V(1,:)';
W = V(2:end, :);
if strcmp(mode, 'show')
fprintf('%i %15.16f %15.16f %15.16f\n', it, L, Lbar, (Lbar - L)/L);
end
if Lbar < L
warning('MSVMptest:NegStep', ...
'Negative step occured, theoretically not possible.');
end
end
function [newV, oldL] = getUpdate(Z, y, rho, p, kappa, lambda, UU, R, V, debug)
% Initialize constants
[n, m] = size(Z);
m = m - 1;
[~, K] = size(R);
% Calculate initial errors
ZV = Z*V;
q = zeros(n, K);
for jj = 1:K
q(:, jj) = sum(ZV.*UU(:,:,jj), 2);
end
% Calculate Huber hinge errors
G1 = (q <= -kappa);
G2 = (q <= 1) & (~G1);
H = (1 - q - (kappa+1)/2).*G1 + (1/(2*kappa + 2))*((1 - q).^2).*G2;
% Split objects in Category 1 and 2
C = sum((H.*R)>0, 2)<=1;
C1i = find(C>0); % for some reason this is faster than C==1
C2i = find(C<1); % for some reason this is faster than C==0
% We are going to do the calculations separately for each category (1,2)
% so we separate all important variables as well.
Q1 = q(C1i, :);
Q2 = q(C2i, :);
R1 = R(C1i, :);
R2 = R(C2i, :);
P1 = rho(C1i, :);
P2 = rho(C2i, :);
y1 = y(C1i, :);
H1 = H(C1i, :);
H2 = H(C2i, :);
ZV1 = ZV(C1i, :);
ZV2 = ZV(C2i, :);
UU1 = UU(C1i, :, :);
UU2 = UU(C2i, :, :);
n1 = length(y1);
n2 = n - n1;
%% First create all matrices for the Case 1 objects.
if debug
% Check the first majorization of the Case 1 objects.
TT1 = sum((H1.^p).*R1,2).^(1/p);
TT2 = sum(H1.*R1,2);
if abs(sum(TT1) - sum(TT2))/n1 > eps
fprintf('\tFirst Case 1: diff = %15.16f\n', abs(sum(TT1) - sum(TT2))/n1);
end
end
% First do the majorization for the Case 1 objects (p = 1 in Huber maj.)
G1 = (Q1 <=-kappa);
G2 = (Q1 <= 1) & (~G1);
G3 = ~(G1|G2);
% calculate dummy variables
Phi = 1 - Q1 - (kappa + 1)/2;
Psi = (1 - Q1)/sqrt(2*kappa + 2);
iPhi = 1./Phi;
a1 = 1/4*iPhi.*(G1 - G3) + (1/(2*kappa + 2))*G2;
a1(isnan(a1)) = 0; % necessary because Inf*0 = NaN and we need 0
b1 = a1.*Q1 + 1/2*G1 + ((Psi.^2)./(1 - Q1)).*G2;
B1 = zeros(n1, K-1);
for jj=1:K
B1 = B1 + ((b1(:, jj) - (a1(:, jj).*Q1(:, jj)))*ones(1, K-1)).*UU1(:,:,jj);
end
if debug
% constant terms in quadratic majorization
c1 = a1.*(Q1.^2) + (1-kappa)/2*G1 + ...
((Psi.^2).*(1 + 2.*Q1./(1 - Q1))).*G2;
TT1 = a1.*(Q1.^2) - 2*b1.*Q1 + c1;
TT2 = H1;
D = sum(sum(abs(TT1 - TT2)))/n1;
if D > eps
fprintf('\tSecond Case 1: diff = %15.16f\n', D);
end
% Case 1 constant terms in total majorization
Gamma1 = 1/n * sum(P1.*sum(c1.*R1,2));
Gamma1 = Gamma1 + 1/n * sum(P1.*sum(ZV1.^2,2).*sum(a1.*R1,2));
Gamma1 = Gamma1 - 1/n * sum(P1.*sum(a1.*(Q1.^2).*R1,2));
clear c1 TT1 TT2 D
end
%% Now create all matrices for the Case 2 objects.
% We can now safely delete a number of matrices from memory
clear G1 G2 G3 Phi Psi iPhi b1
G1a = (Q2 <= (p+kappa-1)/(p-2));
G2a = (Q2 <= 1)&(~G1a);
G3a = ~(G1a|G2a);
G1b = (Q2 <= -kappa);
G2b = (Q2 <= 1) & (~G1b);
G3b = ~(G1b|G2b);
Phi = 1 - Q2 - (kappa+1)/2;
Psi = (1 - Q2)/sqrt(2*kappa + 2);
if p~=2
Chi = (p*Q2 + kappa - 1)/(p - 2);
end
omega = (1/p)*(sum((H2.^p).*R2,2)).^(1/p - 1);
if debug
% First majorization test (p-th root)
TT1 = sum((H2.^p).*R2,2).^(1/p);
TT2 = omega.*sum((H2.^p).*R2,2) + (1 - 1/p)*(sum((H2.^p).*R2,2)).^(1/p);
D = sum(abs(TT1 - TT2))/n2;
if D > eps
fprintf('\tFirst Case 2: diff = %15.16f\n', D);
end
end
% Some parameters are different when p = 2, we recognize this here.
if p~=2
a2 = (1/4 * p^2 * Phi.^(p-2)).*G1a + ...
(1/4 * p * (2*p - 1) * ((kappa+1)/2)^(p-2)).*G2a + ...
(1/4 * p^2 * (p*Phi/(p-2)).^(p-2)).*G3a;
a2(isnan(a2)) = 0; % We need Inf*0 = 0.
else
a2 = 3/2*ones(n2, K);
end
b2 = (a2.*Q2 + 1/2*p*(Phi.^(p-1))).*G1b + ...
(a2.*Q2 + p*(Psi.^(2*p))./(1 - Q2)).*G2b;
if p~=2
b2 = b2 + (a2.*Chi + 1/2*p*(p*Phi/(p-2)).^(p-1)).*G3b;
else
b2 = b2 + 3/2*Q2.*G3b;
end
B2 = zeros(n2, K-1);
for jj=1:K
B2 = B2 + ((b2(:, jj) - (a2(:, jj).*Q2(:, jj)))*ones(1, K-1)).*UU2(:,:,jj);
end
if debug
c2 = (a2.*(Q2.^2) + Phi.^p + p*Q2.*(Phi.^(p-1))).*G1b + ...
(a2.*(Q2.^2) + (Psi.^(2*p)).*(1 + (2*p*Q2)./(1 - Q2))).*G2b;
if p~=2
c2 = c2 + (a2.*(Chi.^2) + p*Chi.*(p*Phi/(p - 2)).^(p-1) + (p*Phi/(p-2)).^p).*G3b;
else
c2 = c2 + 3/2*(Q2.^2).*G3b;
end
TT1 = a2.*(Q2.^2) - 2*b2.*Q2 + c2;
TT2 = H2.^p;
D = sum(sum(abs(TT1 - TT2)))/n2;
if D>eps
fprintf('\tSecond Case 2: diff = %15.16f\n', D);
end
% Case 2 constant terms in majorization
Gamma2 = 1/n * (1 - 1/p) * sum(P2.*(sum((H2.^p).*R2,2).^(1/p)));
Gamma2 = Gamma2 + 1/n * sum(P2.*omega.*sum(c2.*R2,2));
Gamma2 = Gamma2 + 1/n * sum(P2.*omega.*sum(ZV2.^2,2).*sum(a2.*R2,2));
Gamma2 = Gamma2 - 1/n * sum(P2.*omega.*sum((Q2.^2).*a2,2));
end
%% Collect the two classes in a single matrix and calculate update
A(C1i, :) = P1.*sum(a1.*R1,2);
A(C2i, :) = P2.*omega.*sum(a2.*R2,2);
B(C1i, :) = (P1*ones(1, K-1)).*B1;
B(C2i, :) = ((P2.*omega)*ones(1, K-1)).*B2;
A = 1/n*A;
B = 1/n*B;
J = eye(m+1); J(1,1) = 0;
ZAZ = Z'*((A*ones(1, m+1)).*Z);
newV = (ZAZ + lambda*J)\(ZAZ*V + Z'*B);
if debug
oldL = trace((V - 2*V)'*Z'*diag(A)*Z*V) - 2*trace(B'*Z*V) + Gamma1 + ...
Gamma2 + lambda*trace(V'*J*V);
else
oldL = 0;
end
end
function L = getLoss(Z, y, rho, p, kappa, lambda, UU, R, V)
% Initialize constants
[n, m] = size(Z); % note m = m + 1
K = max(y);
J = eye(m); J(1,1) = 0;
% Create the errors
q = zeros(n, K);
ZV = Z*V;
for jj = 1:K
q(:,jj) = sum(ZV.*UU(:,:,jj), 2);
end
% Create logical matrices for calculating the Huber function
G1 = (q <= -kappa);
G2 = (q <= 1) & (~G1);
H = (1 - q - (kappa+1)/2).*G1 + (1/(2*kappa+2))*((1-q).^2).*G2;
% Evaluate loss function
L = sum((H.^p).*R, 2).^(1/p);
L = 1/n*sum(rho.*L);
fprintf("L after rho: %.16f\t", L);
fprintf("reg: %.16f\t", trace(V'*J*V));
L = L + lambda*trace(V'*J*V);
fprintf("L with reg: %.16f\n", L);
end
function R = categorymat(y, K)
I = eye(K);
n = length(y);
R = zeros(n, K);
for ii = 1:n
R(ii, :) = I(y(ii, 1), :);
end
R = ~logical(R);
end
function U = SimplexGen(K)
U = zeros(K, K-1);
for ii=1:K
for jj=1:K-1
if ii<=jj
U(ii,jj) = -1/sqrt(2*(jj^2 + jj));
elseif ii==jj+1
U(ii,jj) = jj/sqrt(2*(jj^2 + jj));
end
end
end
end
function [newy, K] = fix_labels(y)
% % This function fixes the labels in y such that the labels become
% % consecutive.
% % Thus if we have y = [1, 1, 5, 2, 2, 5] the vector returned
% % will be [1, 1, 3, 2, 2, 3]
u = unique(y);
K = length(u);
newy = zeros(length(y), 1);
for ii = 1:K
idx = find(y == u(ii));
for jj = idx
newy(jj) = ii;
end
end
end
|