1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
/**
* @file msvmmaj_train_dataset.c
* @author Gertjan van den Burg
* @date January, 2014
* @brief Functions for finding the optimal parameters for the dataset
*
* @details
* The MSVMMaj algorithm takes a number of parameters. The functions in
* this file are used to find the optimal parameters.
*/
#include <math.h>
#include <time.h>
#include "crossval.h"
#include "libMSVMMaj.h"
#include "msvmmaj.h"
#include "msvmmaj_init.h"
#include "msvmmaj_matrix.h"
#include "msvmmaj_train.h"
#include "msvmmaj_train_dataset.h"
#include "msvmmaj_pred.h"
#include "util.h"
#include "timer.h"
extern FILE *MSVMMAJ_OUTPUT_FILE;
/**
* @brief Initialize a Queue from a Training instance
*
* @details
* A Training instance describes the grid to search over. This funtion
* creates all tasks that need to be performed and adds these to
* a Queue. Each task contains a pointer to the train and test datasets
* which are supplied. Note that the tasks are created in a specific order of
* the parameters, to ensure that the MajModel::V of a previous parameter
* set provides the best possible initial estimate of MajModel::V for the next
* parameter set.
*
* @param[in] training Training struct describing the grid search
* @param[in] queue pointer to a Queue that will be used to
* add the tasks to
* @param[in] train_data MajData of the training set
* @param[in] test_data MajData of the test set
*
*/
void make_queue(struct Training *training, struct Queue *queue,
struct MajData *train_data, struct MajData *test_data)
{
long i, j, k;
long N, cnt = 0;
struct Task *task;
queue->i = 0;
N = training->Np;
N *= training->Nl;
N *= training->Nk;
N *= training->Ne;
N *= training->Nw;
// these parameters are not necessarily non-zero
N *= training->Ng > 0 ? training->Ng : 1;
N *= training->Nc > 0 ? training->Nc : 1;
N *= training->Nd > 0 ? training->Nd : 1;
queue->tasks = Malloc(struct Task *, N);
queue->N = N;
// initialize all tasks
for (i=0; i<N; i++) {
task = Malloc(struct Task, 1);
task->ID = i;
task->train_data = train_data;
task->test_data = test_data;
task->folds = training->folds;
task->kerneltype = training->kerneltype;
task->kernel_param = Calloc(double, training->Ng +
training->Nc + training->Nd);
queue->tasks[i] = task;
}
// These loops mimick a large nested for loop. The advantage is that
// Nd, Nc and Ng which are on the outside of the nested for loop can
// now be zero, without large modification (see below). Whether this
// is indeed better than the nested for loop has not been tested.
cnt = 1;
i = 0;
while (i < N )
for (j=0; j<training->Np; j++)
for (k=0; k<cnt; k++) {
queue->tasks[i]->p = training->ps[j];
i++;
}
cnt *= training->Np;
i = 0;
while (i < N )
for (j=0; j<training->Nl; j++)
for (k=0; k<cnt; k++) {
queue->tasks[i]->lambda =
training->lambdas[j];
i++;
}
cnt *= training->Nl;
i = 0;
while (i < N )
for (j=0; j<training->Nk; j++)
for (k=0; k<cnt; k++) {
queue->tasks[i]->kappa = training->kappas[j];
i++;
}
cnt *= training->Nk;
i = 0;
while (i < N )
for (j=0; j<training->Nw; j++)
for (k=0; k<cnt; k++) {
queue->tasks[i]->weight_idx =
training->weight_idxs[j];
i++;
}
cnt *= training->Nw;
i = 0;
while (i < N )
for (j=0; j<training->Ne; j++)
for (k=0; k<cnt; k++) {
queue->tasks[i]->epsilon =
training->epsilons[j];
i++;
}
cnt *= training->Ne;
i = 0;
while (i < N && training->Ng > 0)
for (j=0; j<training->Ng; j++)
for (k=0; k<cnt; k++) {
queue->tasks[i]->kernel_param[0] =
training->gammas[j];
i++;
}
cnt *= training->Ng > 0 ? training->Ng : 1;
i = 0;
while (i < N && training->Nc > 0)
for (j=0; j<training->Nc; j++)
for (k=0; k<cnt; k++) {
queue->tasks[i]->kernel_param[1] =
training->coefs[j];
i++;
}
cnt *= training->Nc > 0 ? training->Ng : 1;
i = 0;
while (i < N && training->Nd > 0)
for (j=0; j<training->Nd; j++)
for (k=0; k<cnt; k++) {
queue->tasks[i]->kernel_param[2] =
training->degrees[j];
i++;
}
}
/**
* @brief Get new Task from Queue
*
* @details
* Return a pointer to the next Task in the Queue. If no Task instances are
* left, NULL is returned. The internal counter Queue::i is used for finding
* the next Task.
*
* @param[in] q Queue instance
* @returns pointer to next Task
*
*/
struct Task *get_next_task(struct Queue *q)
{
long i = q->i;
if (i < q->N) {
q->i++;
return q->tasks[i];
}
return NULL;
}
/**
* @brief Comparison function for Tasks based on performance
*
* @details
* To be able to sort Task structures on the performance of their specific
* set of parameters, this comparison function is implemented. Task structs
* are sorted with highest performance first.
*
* @param[in] elem1 Task 1
* @param[in] elem2 Task 2
* @returns result of inequality of Task 1 performance over
* Task 2 performance
*/
int tasksort(const void *elem1, const void *elem2)
{
const struct Task *t1 = (*(struct Task **) elem1);
const struct Task *t2 = (*(struct Task **) elem2);
return (t1->performance > t2->performance);
}
/**
* @brief Comparison function for doubles
*
* @details
* Similar to tasksort() only now for two doubles.
*
* @param[in] elem1 number 1
* @param[in] elem2 number 2
* @returns comparison of number 1 larger than number 2
*/
int doublesort(const void *elem1, const void *elem2)
{
const double t1 = (*(double *) elem1);
const double t2 = (*(double *) elem2);
return t1 > t2;
}
/**
* @brief Calculate the percentile of an array of doubles
*
* @details
* The percentile of performance is used to find the top performing
* configurations. Since no standard definition of the percentile exists, we
* use the method used in MATLAB and Octave. Since calculating the percentile
* requires a sorted list of the values, a local copy is made first.
*
* @param[in] values array of doubles
* @param[in] N length of the array
* @param[in] p percentile to calculate ( 0 <= p <= 1.0 ).
* @returns the p-th percentile of the values
*/
double prctile(double *values, long N, double p)
{
long i;
double pi, pr, boundary;
double *local = Malloc(double, N);
for (i=0; i<N; i++)
local[i] = values[i];
qsort(local, N, sizeof(double), doublesort);
p = p*N + 0.5;
pi = maximum(minimum(floor(p), N-1), 1);
pr = maximum(minimum(p - pi, 1), 0);
boundary = (1 - pr)*local[((long) pi)-1] + pr*local[((long) pi)];
free(local);
return boundary;
}
/**
* @brief Run repeats of the Task structs in Queue to find the best
* configuration
*
* @details
* The best performing tasks in the supplied Queue are found by taking those
* Task structs that have a performance greater or equal to the 95% percentile
* of the performance of all tasks. These tasks are then gathered in a new
* Queue. For each of the tasks in this new Queue the cross validation run is
* repeated a number of times.
*
* For each of the Task configurations that are repeated the mean performance,
* standard deviation of the performance and the mean computation time are
* reported.
*
* Finally, the overall best tasks are written to the specified output. These
* tasks are selected to have both the highest mean performance, as well as the
* smallest standard deviation in their performance. This is done as follows.
* First the 99th percentile of task performance and the 1st percentile of
* standard deviation is calculated. If a task exists for which the mean
* performance of the repeats and the standard deviation equals these values
* respectively, this task is found to be the best and is written to the
* output. If no such task exists, the 98th percentile of performance and the
* 2nd percentile of standard deviation is considered. This is repeated until
* an interval is found which contains tasks. If one or more tasks are found,
* this loop stops.
*
* @param[in] q Queue of Task structs which have already been
* run and have a Task::performance value
* @param[in] repeats Number of times to repeat the best
* configurations for consistency
* @param[in] traintype type of training to do (CV or TT)
*
*/
void consistency_repeats(struct Queue *q, long repeats, TrainType traintype)
{
long i, r, N;
double p, pi, pr, pt, boundary, *time, *std, *mean, *perf;
struct Queue *nq = Malloc(struct Queue, 1);
struct MajModel *model = msvmmaj_init_model();
struct Task *task = Malloc(struct Task, 1);
clock_t loop_s, loop_e;
// calculate the performance percentile (Matlab style)
qsort(q->tasks, q->N, sizeof(struct Task *), tasksort);
p = 0.95*q->N + 0.5;
pi = maximum(minimum(floor(p), q->N-1), 1);
pr = maximum(minimum(p - pi, 1), 0);
boundary = (1 - pr)*q->tasks[((long) pi)-1]->performance;
boundary += pr*q->tasks[((long) pi)]->performance;
note("boundary determined at: %f\n", boundary);
// find the number of tasks that perform at least as good as the 95th
// percentile
N = 0;
for (i=0; i<q->N; i++)
if (q->tasks[i]->performance >= boundary)
N++;
note("Number of items: %li\n", N);
std = Calloc(double, N);
mean = Calloc(double, N);
time = Calloc(double, N);
perf = Calloc(double, N*repeats);
// create a new task queue with the tasks which perform well
nq->tasks = Malloc(struct Task *, N);
for (i=q->N-1; i>q->N-N-1; i--)
nq->tasks[q->N-i-1] = q->tasks[i];
nq->N = N;
nq->i = 0;
// for each task run the consistency repeats
for (i=0; i<N; i++) {
task = get_next_task(nq);
make_model_from_task(task, model);
model->n = task->train_data->n;
model->m = task->train_data->m;
model->K = task->train_data->K;
time[i] = 0.0;
note("(%02li/%02li:%03li)\t", i+1, N, task->ID);
for (r=0; r<repeats; r++) {
if (traintype == CV) {
loop_s = clock();
p = cross_validation(model, task->train_data,
task->folds);
loop_e = clock();
time[i] += elapsed_time(loop_s, loop_e);
matrix_set(perf, repeats, i, r, p);
mean[i] += p/((double) repeats);
} else {
note("Only cv is implemented\n");
exit(1);
}
note("%3.3f\t", p);
// this is done because if we reuse the V it's not a
// consistency check
msvmmaj_seed_model_V(NULL, model);
}
for (r=0; r<repeats; r++) {
std[i] += pow(matrix_get(
perf,
repeats,
i,
r) - mean[i],
2.0);
}
std[i] /= ((double) repeats) - 1.0;
std[i] = sqrt(std[i]);
note("(m = %3.3f, s = %3.3f, t = %3.3f)\n",
mean[i], std[i], time[i]);
}
// find the best overall configurations: those with high average
// performance and low deviation in the performance
note("\nBest overall configuration(s):\n");
note("ID\tweights\tepsilon\t\tp\t\tkappa\t\tlambda\t\t"
"mean_perf\tstd_perf\ttime_perf\n");
p = 0.0;
bool breakout = false;
while (breakout == false) {
pi = prctile(mean, N, (100.0-p)/100.0);
pr = prctile(std, N, p/100.0);
pt = prctile(time, N, p/100.0);
for (i=0; i<N; i++)
if ((pi - mean[i] < 0.0001) &&
(std[i] - pr < 0.0001) &&
(time[i] - pt < 0.0001)) {
note("(%li)\tw = %li\te = %f\tp = %f\t"
"k = %f\tl = %f\t"
"mean: %3.3f\tstd: %3.3f\t"
"time: %3.3f\n",
nq->tasks[i]->ID,
nq->tasks[i]->weight_idx,
nq->tasks[i]->epsilon,
nq->tasks[i]->p,
nq->tasks[i]->kappa,
nq->tasks[i]->lambda,
mean[i],
std[i],
time[i]);
breakout = true;
}
p += 1.0;
}
free(task);
free(model);
free(perf);
free(std);
free(mean);
free(time);
}
/**
* @brief Run cross validation with a seed model
*
* @details
* This is an implementation of cross validation which uses the optimal
* parameters MajModel::V of a previous fold as initial conditions for
* MajModel::V of the next fold. An initial seed for V can be given through the
* seed_model parameter. If seed_model is NULL, random starting values are
* used.
*
* @todo
* There must be some inefficiencies here because the fold model is allocated
* at every fold. This would be detrimental with large datasets.
*
* @param[in] model MajModel with the configuration to train
* @param[in] seed_model MajModel with a seed for MajModel::V
* @param[in] data MajData with the dataset
* @param[in] folds number of cross validation folds
* @returns performance (hitrate) of the configuration on
* cross validation
*/
double cross_validation(struct MajModel *model, struct MajData *data,
long folds)
{
FILE *fid;
long f, *predy;
double performance, total_perf = 0;
struct MajData *train_data, *test_data;
long *cv_idx = Calloc(long, data->n);
train_data = msvmmaj_init_data();
test_data = msvmmaj_init_data();
// create splits
msvmmaj_make_cv_split(data->n, folds, cv_idx);
for (f=0; f<folds; f++) {
msvmmaj_get_tt_split(data, train_data, test_data, cv_idx, f);
// reallocate the model if necessary for the new train split
msvmmaj_reallocate_model(model, train_data->n);
msvmmaj_initialize_weights(train_data, model);
// train the model (without output)
fid = MSVMMAJ_OUTPUT_FILE;
MSVMMAJ_OUTPUT_FILE = NULL;
msvmmaj_optimize(model, train_data);
MSVMMAJ_OUTPUT_FILE = fid;
// calculate prediction performance on test set
predy = Calloc(long, test_data->n);
msvmmaj_predict_labels(test_data, model, predy);
performance = msvmmaj_prediction_perf(test_data, predy);
total_perf += performance * test_data->n;
free(predy);
free(train_data->y);
free(train_data->Z);
free(test_data->y);
free(test_data->Z);
}
free(train_data);
free(test_data);
total_perf /= ((double) data->n);
return total_perf;
}
/**
* @brief Run the grid search for a cross validation dataset
*
* @details
* Given a Queue of Task struct to be trained, a grid search is launched to
* find the optimal parameter configuration. As is also done within
* cross_validation(), the optimal weights of one parameter set are used as
* initial estimates for MajModel::V in the next parameter set. Note that to
* optimally exploit this feature of the optimization algorithm, the order in
* which tasks are considered is important. This is considered in
* make_queue().
*
* The performance found by cross validation is stored in the Task struct.
*
* @param[in,out] q Queue with Task instances to run
*/
void start_training_cv(struct Queue *q)
{
double perf, current_max = 0;
struct Task *task = get_next_task(q);
struct MajModel *model = msvmmaj_init_model();
clock_t main_s, main_e, loop_s, loop_e;
model->n = 0;
model->m = task->train_data->m;
model->K = task->train_data->K;
msvmmaj_allocate_model(model);
msvmmaj_seed_model_V(NULL, model);
main_s = clock();
while (task) {
note("(%03li/%03li)\tw = %li\te = %f\tp = %f\tk = %f\t "
"l = %f\t",
task->ID+1, q->N, task->weight_idx,
task->epsilon,
task->p, task->kappa, task->lambda);
make_model_from_task(task, model);
loop_s = clock();
perf = cross_validation(model, task->train_data, task->folds);
loop_e = clock();
current_max = maximum(current_max, perf);
note("\t%3.3f%% (%3.3fs)\t(best = %3.3f%%)\n", perf,
elapsed_time(loop_s, loop_e),
current_max);
q->tasks[task->ID]->performance = perf;
task = get_next_task(q);
}
main_e = clock();
note("\nTotal elapsed time: %8.8f seconds\n",
elapsed_time(main_s, main_e));
free(task);
msvmmaj_free_model(model);
}
void msvmmaj_reallocate_model(struct MajModel *model, long n)
{
long K = model->K;
model->UU = (double *) realloc(model->UU, n*K*(K-1)*sizeof(double));
if (model->UU == NULL) {
fprintf(stderr, "Failed to reallocate UU\n");
exit(1);
}
model->Q = (double *) realloc(model->Q, n*K*sizeof(double));
if (model->Q == NULL) {
fprintf(stderr, "Failed to reallocate Q\n");
exit(1);
}
model->H = (double *) realloc(model->H, n*K*sizeof(double));
if (model->H == NULL) {
fprintf(stderr, "Failed to reallocate H\n");
exit(1);
}
model->R = (double *) realloc(model->R, n*K*sizeof(double));
if (model->R == NULL) {
fprintf(stderr, "Failed to reallocate R\n");
exit(1);
}
model->rho = (double *) realloc(model->rho, n*sizeof(double));
if (model->rho == NULL) {
fprintf(stderr, "Failed to reallocte rho\n");
exit(1);
}
model->n = n;
}
/**
* @brief Run the grid search for a train/test dataset
*
* @details
* This function is similar to start_training_cv(), except that the
* pre-determined training set is used only once, and the pre-determined test
* set is used for validation.
*
* @todo
* It would probably be better to train the model on the training set using
* cross validation and only use the test set when comparing with other
* methods. The way it is now, you're finding out which parameters predict
* _this_ test set best, which is not what you want.
*
* @param[in] q Queue with Task structs to run
*
*/
void start_training_tt(struct Queue *q)
{
FILE *fid;
long c = 0;
long *predy;
double total_perf, current_max = 0;
struct Task *task = get_next_task(q);
struct MajModel *seed_model = msvmmaj_init_model();
clock_t main_s, main_e;
clock_t loop_s, loop_e;
seed_model->m = task->train_data->m;
seed_model->K = task->train_data->K;
msvmmaj_allocate_model(seed_model);
msvmmaj_seed_model_V(NULL, seed_model);
main_s = clock();
while (task) {
total_perf = 0;
note("(%li/%li)\tw = %li\te = %f\tp = %f\tk = %f\tl = %f\t",
c+1, q->N, task->weight_idx, task->epsilon,
task->p, task->kappa, task->lambda);
loop_s = clock();
struct MajModel *model = msvmmaj_init_model();
make_model_from_task(task, model);
model->n = task->train_data->n;
model->m = task->train_data->m;
model->K = task->train_data->K;
msvmmaj_allocate_model(model);
msvmmaj_initialize_weights(task->train_data, model);
msvmmaj_seed_model_V(seed_model, model);
fid = MSVMMAJ_OUTPUT_FILE;
MSVMMAJ_OUTPUT_FILE = NULL;
msvmmaj_optimize(model, task->train_data);
MSVMMAJ_OUTPUT_FILE = fid;
predy = Calloc(long, task->test_data->n);
msvmmaj_predict_labels(task->test_data, model, predy);
if (task->test_data->y != NULL)
total_perf = msvmmaj_prediction_perf(task->test_data, predy);
msvmmaj_seed_model_V(model, seed_model);
msvmmaj_free_model(model);
free(predy);
note(".");
loop_e = clock();
current_max = maximum(current_max, total_perf);
note("\t%3.3f%% (%3.3fs)\t(best = %3.3f%%)\n", total_perf,
elapsed_time(loop_s, loop_e), current_max);
q->tasks[task->ID]->performance = total_perf;
task = get_next_task(q);
}
main_e = clock();
note("\nTotal elapsed time: %8.8f seconds\n",
elapsed_time(main_s, main_e));
free(task);
msvmmaj_free_model(seed_model);
}
/**
* @brief Free the Queue struct
*
* @details
* Freeing the allocated memory of the Queue means freeing every Task struct
* and then freeing the Queue.
*
* @param[in] q Queue to be freed
*
*/
void free_queue(struct Queue *q)
{
long i;
for (i=0; i<q->N; i++) {
free(q->tasks[i]->kernel_param);
free(q->tasks[i]);
}
free(q->tasks);
free(q);
}
/**
* @brief Copy parameters from Task to MajModel
*
* @details
* A Task struct only contains the parameters of the MajModel to be estimated.
* This function is used to copy these parameters.
*
* @param[in] task Task instance with parameters
* @param[in,out] model MajModel to which the parameters are copied
*/
void make_model_from_task(struct Task *task, struct MajModel *model)
{
model->weight_idx = task->weight_idx;
model->epsilon = task->epsilon;
model->p = task->p;
model->kappa = task->kappa;
model->lambda = task->lambda;
}
/**
* @brief Copy model parameters between two MajModel structs
*
* @details
* The parameters copied are MajModel::weight_idx, MajModel::epsilon,
* MajModel::p, MajModel::kappa, and MajModel::lambda.
*
* @param[in] from MajModel to copy parameters from
* @param[in,out] to MajModel to copy parameters to
*/
void copy_model(struct MajModel *from, struct MajModel *to)
{
to->weight_idx = from->weight_idx;
to->epsilon = from->epsilon;
to->p = from->p;
to->kappa = from->kappa;
to->lambda = from->lambda;
}
|