aboutsummaryrefslogtreecommitdiff
path: root/src/gensvm_optimize.c
blob: 60a5682282f2419e40febae8eb50b0825a71ae71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/**
 * @file gensvm_optimize.c
 * @author Gertjan van den Burg
 * @date August 9, 2013
 * @brief Main functions for training the GenSVM solution.
 *
 * @details
 * Contains update and loss functions used to actually find
 * the optimal V.
 *
 */

#include "gensvm_optimize.h"

/**
 * Maximum number of iterations of the algorithm.
 */
#define MAX_ITER 1000000000

/**
 * Iteration frequency with which to print to stdout
 */
#define PRINT_ITER 100

/**
 * @brief The main training loop for GenSVM
 *
 * @details
 * This function is the main training function. This function
 * handles the optimization of the model with the given model parameters, with
 * the data given. On return the matrix GenModel::V contains the optimal
 * weight matrix.
 *
 * In this function, step doubling is used in the majorization algorithm after
 * a burn-in of 50 iterations.
 *
 * @param[in,out] 	model 	the GenModel to be trained. Contains optimal
 * 				V on exit.
 * @param[in] 		data 	the GenData to train the model with.
 */
void gensvm_optimize(struct GenModel *model, struct GenData *data)
{
	long it = 0;
	double L, Lbar;

	long n = model->n;
	long m = model->m;
	long K = model->K;

	// initialize the workspace
	struct GenWork *work = gensvm_init_work(model);

	// print some info on the dataset and model configuration
	note("Starting main loop.\n");
	note("Dataset:\n");
	note("\tn = %i\n", n);
	note("\tm = %i\n", m);
	note("\tK = %i\n", K);
	note("Parameters:\n");
	note("\tkappa = %f\n", model->kappa);
	note("\tp = %f\n", model->p);
	note("\tlambda = %15.16f\n", model->lambda);
	note("\tepsilon = %g\n", model->epsilon);
	note("\n");

	// compute necessary simplex vectors
	gensvm_simplex(model);
	gensvm_simplex_diff(model);

	// get initial loss
	L = gensvm_get_loss(model, data, work);
	Lbar = L + 2.0*model->epsilon*L;

	// run main loop
	while ((it < MAX_ITER) && (Lbar - L)/L > model->epsilon)
	{
		// ensures V contains newest V and Vbar contains V from
		// previous
		gensvm_get_update(model, data, work);
		if (it > 50)
			gensvm_step_doubling(model);

		Lbar = L;
		L = gensvm_get_loss(model, data, work);

		if (it%PRINT_ITER == 0)
			note("iter = %li, L = %15.16f, Lbar = %15.16f, "
			     "reldiff = %15.16f\n", it, L, Lbar, (Lbar - L)/L);
		it++;
	}

	// print warnings if necessary
	if (L > Lbar)
		err("[GenSVM Warning]: Negative step occurred in "
				"majorization.\n");
	if (it >= MAX_ITER)
		err("[GenSVM Warning]: maximum number of iterations "
				"reached.\n");

	// print final iteration count and loss
	note("Optimization finished, iter = %li, loss = %15.16f, "
			"rel. diff. = %15.16f\n", it-1, L,
			(Lbar - L)/L);

	// compute and print the number of SVs in the model
	note("Number of support vectors: %li\n", gensvm_num_sv(model));

	// store the training error in the model
	model->training_error = (Lbar - L)/L;

	// free the workspace
	gensvm_free_work(work);
}

/**
 * @brief Calculate the current value of the loss function
 *
 * @details
 * The current loss function value is calculated based on the matrix V in the
 * given model. Note that the matrix ZV is passed explicitly to avoid having
 * to reallocate memory at every step.
 *
 * @param[in] 		model 	GenModel structure which holds the current
 * 				estimate V
 * @param[in]  		data 	GenData structure
 * @param[in] 		work 	allocated workspace with the ZV matrix to use
 * @returns 			the current value of the loss function
 */
double gensvm_get_loss(struct GenModel *model, struct GenData *data, 
		struct GenWork *work)
{
	long i, j;
	long n = model->n;
	long K = model->K;
	long m = model->m;

	double value, rowvalue, loss = 0.0;

	gensvm_calculate_errors(model, data, work->ZV);
	gensvm_calculate_huber(model);

	for (i=0; i<n; i++) {
		rowvalue = 0;
		value = 0;
		for (j=0; j<K; j++) {
			if (j == (data->y[i]-1))
				continue;
			value = matrix_get(model->H, K, i, j);
			value = pow(value, model->p);
			rowvalue += value;
		}
		rowvalue = pow(rowvalue, 1.0/(model->p));
		rowvalue *= model->rho[i];
		loss += rowvalue;
	}
	loss /= ((double) n);

	value = 0;
	for (i=1; i<m+1; i++) {
		for (j=0; j<K-1; j++) {
			value += pow(matrix_get(model->V, K-1, i, j), 2.0);
		}
	}
	loss += model->lambda * value;

	return loss;
}

/**
 * @brief Calculate the value of omega for a single instance
 *
 * @details
 * This function calculates the value of the @f$ \omega_i @f$ variable for a
 * single instance, where
 * @f[
 * 	\omega_i = \frac{1}{p} \left( \sum_{j \neq y_i} h^p\left(
 * 	\overline{q}_i^{(y_i j)} \right)  \right)^{1/p-1}
 * @f]
 * Note that his function uses the precalculated values from GenModel::H and
 * GenModel::R to speed up the computation.
 *
 * @param[in] 	model 	GenModel structure with the current model
 * @param[in] 	i 	index of the instance for which to calculate omega
 * @returns 		the value of omega for instance i
 *
 */
double gensvm_calculate_omega(struct GenModel *model, struct GenData *data,
		long i)
{
	long j;
	double h, omega = 0.0,
	       p = model->p;

	for (j=0; j<model->K; j++) {
		if (j == (data->y[i]-1))
			continue;
		h = matrix_get(model->H, model->K, i, j);
		omega += pow(h, p);
	}
	omega = (1.0/p)*pow(omega, 1.0/p - 1.0);

	return omega;
}

/**
 * @brief Check if we can do simple majorization for a given instance
 *
 * @details
 * A simple majorization is possible if at most one of the Huberized hinge
 * errors is nonzero for an instance. This is checked here. For this we
 * compute the product of the Huberized error for all @f$j \neq y_i@f$ and
 * check if strictly less than 2 are nonzero. See also the @ref update_math.
 *
 * @param[in] 	model 	GenModel structure with the current model
 * @param[in] 	i 	index of the instance for which to check
 * @returns 		whether or not we can do simple majorization
 *
 */
bool gensvm_majorize_is_simple(struct GenModel *model, struct GenData *data,
		long i)
{
	long j;
	double h, value = 0;
	for (j=0; j<model->K; j++) {
		if (j == (data->y[i]-1))
			continue;
		h = matrix_get(model->H, model->K, i, j);
		value += (h > 0) ? 1 : 0;
		if (value > 1)
			return false;
	}
	return true;
}

/**
 * @brief Compute majorization coefficients for non-simple instance
 *
 * @details
 * In this function we compute the majorization coefficients needed for an
 * instance with a non-simple majorization (@f$\varepsilon_i = 0@f$). In this
 * function, we distinguish a number of cases depending on the value of
 * GenModel::p and the respective value of @f$\overline{q}_i^{(y_ij)}@f$. Note
 * that the linear coefficient is of the form @f$b - a\overline{q}@f$, but
 * often the second term is included in the definition of @f$b@f$, so it can
 * be optimized out. The output argument \p b_aq contains this difference
 * therefore in one go. More details on this function can be found in the @ref
 * update_math. See also gensvm_calculate_ab_simple().
 *
 * @param[in] 	model 	GenModel structure with the current model
 * @param[in] 	i 	index for the instance
 * @param[in] 	j 	index for the class
 * @param[out] 	*a 	output argument for the quadratic coefficient
 * @param[out]  *b_aq 	output argument for the linear coefficient.
 *
 */
void gensvm_calculate_ab_non_simple(struct GenModel *model, long i, long j,
		double *a, double *b_aq)
{
	double q = matrix_get(model->Q, model->K, i, j);
	double p = model->p;
	double kappa = model->kappa;
	const double a2g2 = 0.25*p*(2.0*p - 1.0)*pow((kappa+1.0)/2.0,p-2.0);

	if (2.0 - model->p < 1e-2) {
		if (q <= - kappa) {
			*b_aq = 0.5 - kappa/2.0 - q;
		} else if ( q <= 1.0) {
			*b_aq = pow(1.0 - q, 3.0)/(2.0*pow(kappa + 1.0, 2.0));
		} else {
			*b_aq = 0;
		}
		*a = 1.5;
	} else {
		if (q <= (p + kappa - 1.0)/(p - 2.0)) {
			*a = 0.25*pow(p, 2.0)*pow(0.5 - kappa/2.0 - q, p - 2.0);
		} else if (q <= 1.0) {
			*a = a2g2;
		} else {
			*a = 0.25*pow(p, 2.0)*pow((p/(p - 2.0))*(0.5 -
						kappa/2.0 - q), p - 2.0);
			*b_aq = (*a)*(2.0*q + kappa - 1.0)/(p - 2.0) +
				0.5*p*pow(p/(p - 2.0)*(0.5 - kappa/2.0 - q),
						p - 1.0);
		}
		if (q <= -kappa) {
			*b_aq = 0.5*p*pow(0.5 - kappa/2.0 - q, p - 1.0);
		} else if ( q <= 1.0) {
			*b_aq = p*pow(1.0 - q, 2.0*p - 1.0)/pow(2*kappa+2.0, p);
		}
	}
}

/**
 * @brief Compute majorization coefficients for simple instances
 *
 * @details
 * In this function we compute the majorization coefficients needed for an
 * instance with a simple majorization. This corresponds to the non-simple
 * majorization for the case where GenModel::p equals 1. Due to this condition
 * the majorization coefficients are quite simple to compute.  Note that the
 * linear coefficient of the majorization is of the form @f$b -
 * a\overline{q}@f$, but often the second term is included in the definition
 * of @f$b@f$, so it can be optimized out. For more details see the @ref
 * update_math, and gensvm_calculate_ab_non_simple().
 *
 * @param[in] 	model 	GenModel structure with the current model
 * @param[in] 	i 	index for the instance
 * @param[in] 	j 	index for the class
 * @param[out] 	*a 	output argument for the quadratic coefficient
 * @param[out] 	*b_aq 	output argument for the linear coefficient
 *
 */
void gensvm_calculate_ab_simple(struct GenModel *model, long i, long j,
		double *a, double *b_aq)
{
	double q = matrix_get(model->Q, model->K, i, j);

	if (q <= - model->kappa) {
		*a = 0.25/(0.5 - model->kappa/2.0 - q);
		*b_aq = 0.5;
	} else if (q <= 1.0) {
		*a = 1.0/(2.0*model->kappa + 2.0);
		*b_aq = (1.0 - q)*(*a);
	} else {
		*a = -0.25/(0.5 - model->kappa/2.0 - q);
		*b_aq = 0;
	}
}

/**
 * @brief Compute the alpha_i and beta_i for an instance
 *
 * @details
 * This computes the @f$\alpha_i@f$ value for an instance, and simultaneously 
 * updating the row of the B matrix corresponding to that
 * instance (the @f$\boldsymbol{\beta}_i'@f$). The advantage of doing this at 
 * the same time is that we can compute the a and b values simultaneously in 
 * the gensvm_calculate_ab_simple() and gensvm_calculate_ab_non_simple()
 * functions.
 *
 * The computation is done by first checking whether simple majorization is
 * possible for this instance. If so, the @f$\omega_i@f$ value is set to 1.0,
 * otherwise this value is computed. If simple majorization is possible, the
 * coefficients a and b_aq are computed by gensvm_calculate_ab_simple(),
 * otherwise they're computed by gensvm_calculate_ab_non_simple(). Next, the
 * beta_i updated through the efficient BLAS daxpy function, and part of the 
 * value of @f$\alpha_i@f$ is computed. The final value of @f$\alpha_i@f$ is 
 * returned.
 *
 * @param[in] 		model 	GenModel structure with the current model
 * @param[in] 		i 	index of the instance to update
 * @param[out] 		beta	beta vector of linear coefficients (assumed to
 * 				be allocated elsewhere, initialized here)
 * @returns 			the @f$\alpha_i@f$ value of this instance
 *
 */
double gensvm_get_alpha_beta(struct GenModel *model, struct GenData *data,
		long i, double *beta)
{
	bool simple;
	long j,
	     K = model->K;
	double omega, a, b_aq = 0.0,
	       alpha = 0.0;
	double *uu_row = NULL;
	const double in = 1.0/((double) model->n);

	simple = gensvm_majorize_is_simple(model, data, i);
	omega = simple ? 1.0 : gensvm_calculate_omega(model, data, i);

	Memset(beta, double, K-1);
	for (j=0; j<K; j++) {
		// skip the class y_i = k
		if (j == (data->y[i]-1))
			continue;

		// calculate the a_ijk and (b_ijk - a_ijk q_i^(kj)) values
		if (simple) {
			gensvm_calculate_ab_simple(model, i, j, &a, &b_aq);
		} else {
			gensvm_calculate_ab_non_simple(model, i, j, &a, &b_aq);
		}

		// daxpy on beta and UU
		// daxpy does: y = a*x + y
		// so y = beta, UU_row = x, a = factor
		b_aq *= model->rho[i] * omega * in;
		uu_row = &model->UU[((data->y[i]-1)*K+j)*(K-1)];
		cblas_daxpy(K-1, b_aq, uu_row, 1, beta, 1);

		// increment Avalue
		alpha += a;
	}
	alpha *= omega * model->rho[i] * in;
	return alpha;
}

/**
 * @brief Perform a single step of the majorization algorithm to update V
 *
 * @details
 * This function contains the main update calculations of the algorithm. These
 * calculations are necessary to find a new update V. The calculations exist of
 * recalculating the majorization coefficients for all instances and all
 * classes, and solving a linear system to find V.
 *
 * Because the function gensvm_get_update() is always called after a call to
 * gensvm_get_loss() with the same GenModel::V, it is unnecessary to calculate
 * the updated errors GenModel::Q and GenModel::H here too. This saves on
 * computation time.
 *
 * In calculating the majorization coefficients we calculate the elements of a
 * diagonal matrix A with elements
 * @f[
 * 	A_{i, i} = \frac{1}{n} \rho_i \sum_{j \neq k} \left[
 * 		\varepsilon_i a_{ijk}^{(1)} + (1 - \varepsilon_i) \omega_i
 * 		a_{ijk}^{(p)} \right],
 * @f]
 * where @f$ k = y_i @f$.
 * Since this matrix is only used to calculate the matrix @f$ Z' A Z @f$, it
 * is efficient to update a matrix ZAZ through consecutive rank 1 updates with
 * a single element of A and the corresponding row of Z. The BLAS function
 * dsyr is used for this.
 *
 * The B matrix is has rows
 * @f[
 * 	\boldsymbol{\beta}_i' = \frac{1}{n} \rho_i \sum_{j \neq k} \left[
 * 		\varepsilon_i \left( b_{ijk}^{(1)} - a_{ijk}^{(1)}
 * 			\overline{q}_i^{(kj)} \right) + (1 - \varepsilon_i)
 * 		\omega_i \left( b_{ijk}^{(p)} - a_{ijk}^{(p)}
 * 			\overline{q}_i^{(kj)} \right) \right]
 * 		\boldsymbol{\delta}_{kj}'
 * @f]
 * This is also split into two cases, one for which @f$ \varepsilon_i = 1 @f$,
 * and one for when it is 0. The 3D simplex difference matrix is used here, in
 * the form of the @f$ \boldsymbol{\delta}_{kj}' @f$.
 *
 * Finally, the following system is solved
 * @f[
 * 	(\textbf{Z}'\textbf{AZ} + \lambda \textbf{J})\textbf{V} =
 * 		(\textbf{Z}'\textbf{AZ}\overline{\textbf{V}} + \textbf{Z}'
 * 		\textbf{B})
 * @f]
 * solving this system is done through dposv().
 *
 * @todo
 * Consider using CblasColMajor everywhere
 *
 * @param[in,out] 	model 	model to be updated
 * @param[in] 		data 	data used in model
 * @param[in] 		work 	allocated workspace to use
 */
void gensvm_get_update(struct GenModel *model, struct GenData *data, 
		struct GenWork *work)
{
	int status;
	long i, j;
	double alpha;

	long n = model->n;
	long m = model->m;
	long K = model->K;

	gensvm_reset_work(work);

	// generate Z'*A*Z and Z'*B by rank 1 operations
	for (i=0; i<n; i++) {
		alpha = gensvm_get_alpha_beta(model, data, i, work->beta);

		// calculate row of matrix LZ, which is a scalar 
		// multiplication of sqrt(alpha_i) and row z_i' of Z
		cblas_daxpy(m+1, sqrt(alpha), &data->Z[i*(m+1)], 1, 
				&work->LZ[i*(m+1)], 1);

		// rank 1 update of matrix Z'*B
		// Note: LDA is the second dimension of ZB because of
		// Row-Major order
		cblas_dger(CblasRowMajor, m+1, K-1, 1, &data->Z[i*(m+1)], 1,
				work->beta, 1, work->ZB, K-1);
	}

	// calculate Z'*A*Z by symmetric multiplication of LZ with itself 
	// (ZAZ = (LZ)' * (LZ)
	cblas_dsyrk(CblasRowMajor, CblasUpper, CblasTrans, m+1, n, 1.0,
			work->LZ, m+1, 0.0, work->ZAZ, m+1);

	// Calculate right-hand side of system we want to solve
	// dsymm performs ZB := 1.0 * (ZAZ) * Vbar + 1.0 * ZB
	// the right-hand side is thus stored in ZB after this call
	// Note: LDB and LDC are second dimensions of the matrices due to
	// Row-Major order
	cblas_dsymm(CblasRowMajor, CblasLeft, CblasUpper, m+1, K-1, 1, 
			work->ZAZ, m+1, model->V, K-1, 1.0, work->ZB, K-1);

	// Calculate left-hand side of system we want to solve
	// Add lambda to all diagonal elements except the first one. Recall
	// that ZAZ is of size m+1 and is symmetric.
	for (i=m+2; i<=m*(m+2); i+=m+2)
		work->ZAZ[i] += model->lambda;

	// Lapack uses column-major order, so we transform the ZB matrix to
	// correspond to this.
	for (i=0; i<m+1; i++)
		for (j=0; j<K-1; j++)
			work->ZBc[j*(m+1)+i] = work->ZB[i*(K-1)+j];

	// Solve the system using dposv. Note that above the upper triangular
	// part has always been used in row-major order for ZAZ. This
	// corresponds to the lower triangular part in column-major order.
	status = dposv('L', m+1, K-1, work->ZAZ, m+1, work->ZBc, m+1);

	// Use dsysv as fallback, for when the ZAZ matrix is not positive
	// semi-definite for some reason (perhaps due to rounding errors).
	// This step shouldn't be necessary but is included for safety.
	if (status != 0) {
		err("[GenSVM Warning]: Received nonzero status from "
				"dposv: %i\n", status);
		int *IPIV = Malloc(int, m+1);
		double *WORK = Malloc(double, 1);
		status = dsysv('L', m+1, K-1, work->ZAZ, m+1, IPIV, work->ZBc, 
				m+1, WORK, -1);

		int LWORK = WORK[0];
		WORK = Realloc(WORK, double, LWORK);
		status = dsysv('L', m+1, K-1, work->ZAZ, m+1, IPIV, work->ZBc, 
				m+1, WORK, LWORK);
		if (status != 0)
			err("[GenSVM Warning]: Received nonzero "
					"status from dsysv: %i\n", status);
		free(WORK);
		WORK = NULL;
		free(IPIV);
		IPIV = NULL;
	}

	// the solution is now stored in ZBc, in column-major order. Here we
	// convert this back to row-major order
	for (i=0; i<m+1; i++)
		for (j=0; j<K-1; j++)
			work->ZB[i*(K-1)+j] = work->ZBc[j*(m+1)+i];

	// copy the old V to Vbar and the new solution to V
	for (i=0; i<m+1; i++) {
		for (j=0; j<K-1; j++) {
			matrix_set(model->Vbar, K-1, i, j,
					matrix_get(model->V, K-1, i, j));
			matrix_set(model->V, K-1, i, j,
					matrix_get(work->ZB, K-1, i, j));
		}
	}
}

/**
 * @brief Use step doubling
 *
 * @details
 * Step doubling can be used to speed up the maorization algorithm. Instead of
 * using the value at the minimimum of the majorization function, the value
 * ``opposite'' the majorization point is used. This can essentially cut the
 * number of iterations necessary to reach the minimum in half.
 *
 * @param[in] 	model	GenModel containing the augmented parameters
 */
void gensvm_step_doubling(struct GenModel *model)
{
	long i, j;
	double value;

	long m = model->m;
	long K = model->K;

	for (i=0; i<m+1; i++) {
		for (j=0; j<K-1; j++) {
			matrix_mul(model->V, K-1, i, j, 2.0);
			value = - matrix_get(model->Vbar, K-1, i, j);
			matrix_add(model->V, K-1, i, j, value);
		}
	}
}

/**
 * @brief Calculate the Huber hinge errors
 *
 * @details
 * For each of the scalar errors in Q the Huber hinge errors are
 * calculated. The Huber hinge is here defined as
 * @f[
 * 	h(q) =
 * 		\begin{dcases}
 * 			1 - q - \frac{\kappa + 1}{2} & \text{if } q \leq
 * 			-\kappa \\
 * 			\frac{1}{2(\kappa + 1)} ( 1 - q)^2 & \text{if } q \in
 * 			(-\kappa, 1] \\
 * 			0 & \text{if } q > 1
 * 		\end{dcases}
 * @f]
 *
 * @param[in,out] model 	the corresponding GenModel
 */
void gensvm_calculate_huber(struct GenModel *model)
{
	long i, j;
	double q, value;

	for (i=0; i<model->n; i++) {
		for (j=0; j<model->K; j++) {
			q = matrix_get(model->Q, model->K, i, j);
			value = 0.0;
			if (q <= -model->kappa) {
				value = 1.0 - q - (model->kappa+1.0)/2.0;
			} else if (q <= 1.0) {
				value = 1.0/(2.0*model->kappa+2.0)*pow(1.0 - q,
					       	2.0);
			}
			matrix_set(model->H, model->K, i, j, value);
		}
	}
}

/**
 * @brief Calculate the scalar errors
 *
 * @details
 * Calculate the scalar errors q based on the current estimate of V, and
 * store these in Q. It is assumed that the memory for Q has already been
 * allocated. In addition, the matrix ZV is calculated here. It is assigned
 * to a pre-allocated block of memory, which is passed to this function.
 *
 * @param[in,out] 	model 	the corresponding GenModel
 * @param[in] 		data 	the corresponding GenData
 * @param[in,out] 	ZV 	a pointer to a memory block for ZV. On exit
 * 				this block is updated with the new ZV matrix
 * 				calculated with GenModel::V
 */
void gensvm_calculate_errors(struct GenModel *model, struct GenData *data,
		double *ZV)
{
	long i, j;
	double q, *uu_row = NULL;

	long n = model->n;
	long m = model->m;
	long K = model->K;

	cblas_dgemm(
			CblasRowMajor,
			CblasNoTrans,
			CblasNoTrans,
			n,
			K-1,
			m+1,
			1.0,
			data->Z,
			m+1,
			model->V,
			K-1,
			0,
			ZV,
			K-1);

	for (i=0; i<n; i++) {
		for (j=0; j<K; j++) {
			if (j == (data->y[i]-1))
				continue;
			uu_row = &model->UU[((data->y[i]-1)*K+j)*(K-1)];
			q = cblas_ddot(K-1, &ZV[i*(K-1)], 1, uu_row, 1);
			matrix_set(model->Q, K, i, j, q);
		}
	}
}

/**
 * @brief Solve AX = B where A is symmetric positive definite.
 *
 * @details
 * Solve a linear system of equations AX = B where A is symmetric positive
 * definite. This function is a wrapper for the external  LAPACK routine
 * dposv.
 *
 * @param[in] 		UPLO 	which triangle of A is stored
 * @param[in] 		N 	order of A
 * @param[in] 		NRHS 	number of columns of B
 * @param[in,out] 	A 	double precision array of size (LDA, N). On
 * 				exit contains the upper or lower factor of the
 * 				Cholesky factorization of A.
 * @param[in] 		LDA 	leading dimension of A
 * @param[in,out] 	B 	double precision array of size (LDB, NRHS). On
 * 				exit contains the N-by-NRHS solution matrix X.
 * @param[in] 		LDB 	the leading dimension of B
 * @returns 			info parameter which contains the status of the
 * 				computation:
 * 					- =0: 	success
 * 					- <0: 	if -i, the i-th argument had
 * 						an illegal value
 * 					- >0: 	if i, the leading minor of A
 * 						was not positive definite
 *
 * See the LAPACK documentation at:
 * http://www.netlib.org/lapack/explore-html/dc/de9/group__double_p_osolve.html
 */
int dposv(char UPLO, int N, int NRHS, double *A, int LDA, double *B,
		int LDB)
{
	extern void dposv_(char *UPLO, int *Np, int *NRHSp, double *A,
			int *LDAp, double *B, int *LDBp, int *INFOp);
	int INFO;
	dposv_(&UPLO, &N, &NRHS, A, &LDA, B, &LDB, &INFO);
	return INFO;
}

/**
 * @brief Solve a system of equations AX = B where A is symmetric.
 *
 * @details
 * Solve a linear system of equations AX = B where A is symmetric. This
 * function is a wrapper for the external LAPACK routine dsysv.
 *
 * @param[in] 		UPLO 	which triangle of A is stored
 * @param[in] 		N 	order of A
 * @param[in] 		NRHS 	number of columns of B
 * @param[in,out] 	A 	double precision array of size (LDA, N). On
 * 				exit contains the block diagonal matrix D and
 * 				the multipliers used to obtain the factor U or
 * 				L from the factorization A = U*D*U**T or
 * 				A = L*D*L**T.
 * @param[in] 		LDA 	leading dimension of A
 * @param[in] 		IPIV 	integer array containing the details of D
 * @param[in,out] 	B 	double precision array of size (LDB, NRHS). On
 * 				exit contains the N-by-NRHS matrix X
 * @param[in] 		LDB 	leading dimension of B
 * @param[out] 		WORK 	double precision array of size max(1,LWORK). On
 * 				exit, WORK(1) contains the optimal LWORK
 * @param[in] 		LWORK 	the length of WORK, can be used for determining
 * 				the optimal blocksize for dsystrf.
 * @returns 			info parameter which contains the status of the
 * 				computation:
 * 					- =0: 	success
 * 					- <0: 	if -i, the i-th argument had an
 * 						illegal value
 * 					- >0: 	if i, D(i, i) is exactly zero,
 * 						no solution can be computed.
 *
 * See the LAPACK documentation at:
 * http://www.netlib.org/lapack/explore-html/d6/d0e/group__double_s_ysolve.html
 */
int dsysv(char UPLO, int N, int NRHS, double *A, int LDA, int *IPIV,
		double *B, int LDB, double *WORK, int LWORK)
{
	extern void dsysv_(char *UPLO, int *Np, int *NRHSp, double *A,
			int *LDAp, int *IPIV, double *B, int *LDBp,
			double *WORK, int *LWORK, int *INFOp);
	int INFO;
	dsysv_(&UPLO, &N, &NRHS, A, &LDA, IPIV, B, &LDB, WORK, &LWORK, &INFO);
	return INFO;
}