1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
/**
* @file gensvm_io.c
* @author G.J.J. van den Burg
* @date 2014-01-07
* @brief Functions for input and output of data and model files
*
* @details
* This file contains functions for reading and writing model files, and data
* files. It also contains a function for generating a string of the current
* time, used in writing output files.
*
* @copyright
Copyright 2016, G.J.J. van den Burg.
This file is part of GenSVM.
GenSVM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GenSVM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GenSVM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gensvm_io.h"
/**
* @brief Read data from file
*
* @details
* Read the data from the data_file. The data matrix X is augmented
* with a column of ones, to get the matrix Z. The data is expected
* to follow a specific format, which is specified in the @ref spec_data_file.
* The class labels are assumed to be in the interval [1 .. K], which can be
* checked using the function gensvm_check_outcome_contiguous().
*
* @param[in,out] dataset initialized GenData struct
* @param[in] data_file filename of the data file.
*/
void gensvm_read_data(struct GenData *dataset, char *data_file)
{
FILE *fid = NULL;
long i, j, n, m,
nr = 0,
K = 0;
double value;
char buf[GENSVM_MAX_LINE_LENGTH];
if ((fid = fopen(data_file, "r")) == NULL) {
// LCOV_EXCL_START
err("[GenSVM Error]: Datafile %s could not be opened.\n",
data_file);
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
// Read data dimensions
nr += fscanf(fid, "%ld", &n);
nr += fscanf(fid, "%ld", &m);
// Allocate memory
dataset->RAW = Malloc(double, n*(m+1));
// Read first line of data
for (j=1; j<m+1; j++) {
nr += fscanf(fid, "%lf", &value);
matrix_set(dataset->RAW, m+1, 0, j, value);
}
if (fgets(buf, GENSVM_MAX_LINE_LENGTH, fid) == NULL) {
// LCOV_EXCL_START
err("[GenSVM Error]: No label found on first line.\n");
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
// Check if there is a label at the end of the line
if (sscanf(buf, "%lf", &value) > 0) {
dataset->y = Malloc(long, n);
dataset->y[0] = value;
K = 1;
} else {
free(dataset->y);
dataset->y = NULL;
}
// Read the rest of the file
for (i=1; i<n; i++) {
for (j=1; j<m+1; j++) {
nr += fscanf(fid, "%lf", &value);
matrix_set(dataset->RAW, m+1, i, j, value);
}
if (dataset->y != NULL) {
nr += fscanf(fid, "%lf", &value);
dataset->y[i] = (long) value;
K = maximum(K, dataset->y[i]);
}
}
fclose(fid);
if (nr < n * m) {
// LCOV_EXCL_START
err("[GenSVM Error]: not enough data found in %s\n",
data_file);
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
// Set the column of ones
for (i=0; i<n; i++)
matrix_set(dataset->RAW, m+1, i, 0, 1.0);
dataset->n = n;
dataset->m = m;
dataset->r = m;
dataset->K = K;
dataset->Z = dataset->RAW;
if (gensvm_could_sparse(dataset->Z, n, m+1)) {
note("Converting to sparse ... ");
dataset->spZ = gensvm_dense_to_sparse(dataset->Z, n, m+1);
note("done.\n");
free(dataset->RAW);
dataset->RAW = NULL;
dataset->Z = NULL;
}
}
/**
* @brief Print an error to the screen and exit (copied from LibSVM)
*
* @param[in] line_num line number where the error occured
*
*/
void exit_input_error(int line_num)
{
err("[GenSVM Error]: Wrong input format on line: %i\n", line_num);
exit(EXIT_FAILURE);
}
/**
* @brief Read data from a file in LibSVM/SVMlight format
*
* @details
* This function reads data from a file where the data is stored in
* LibSVM/SVMlight format. The file format is described in @ref
* spec_libsvm_data_file. This is a sparse data format, which can be
* beneficial for certain applications. The advantage of having this function
* here is twofold: 1) existing datasets where data is stored in
* LibSVM/SVMlight format can be easily used in GenSVM, and 2) sparse datasets
* which are too large for memory when kept in dense format can be loaded
* efficiently into GenSVM.
*
* @note
* This code is based on the read_problem() function in the svm-train.c
* file of LibSVM. It has however been expanded to be able to handle data
* files without labels.
*
* @note
* This file tries to detect whether 1-based or 0-based indexing is used in
* the data file. By default 1-based indexing is used, but if an index is
* found with value 0, 0-based indexing is assumed.
*
* @sa
* gensvm_read_problem()
*
* @param[in] data GenData structure
* @param[in] data_file filename of the datafile
*
*/
void gensvm_read_data_libsvm(struct GenData *data, char *data_file)
{
bool do_sparse, zero_based = false;
long i, j, n, m, K, nnz, cnt, tmp, index, row_cnt, num_labels,
min_index = 1;
int n_big, n_small, big_start;
double value;
FILE *fid = NULL;
char *label = NULL,
*endptr = NULL,
**big_parts = NULL,
**small_parts = NULL;
char buf[GENSVM_MAX_LINE_LENGTH];
fid = fopen(data_file, "r");
if (fid == NULL) {
// LCOV_EXCL_START
err("[GenSVM Error]: Datafile %s could not be opened.\n",
data_file);
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
// first count the number of elements
n = 0;
m = -1;
num_labels = 0;
nnz = 0;
while (fgets(buf, GENSVM_MAX_LINE_LENGTH, fid) != NULL) {
// split the string in labels and/or index:value pairs
big_parts = str_split(buf, " \t", &n_big);
// record if this line has a label (first part has no colon)
num_labels += (!str_contains_char(big_parts[0], ':'));
// check for each part if it is a index:value pair
for (i=0; i<n_big; i++) {
if (!str_contains_char(big_parts[i], ':'))
continue;
// split the index:value pair
small_parts = str_split(big_parts[i], ":", &n_small);
// convert the index to a number
index = strtol(small_parts[0], &endptr, 10);
// catch conversion errors
if (endptr == small_parts[0] || errno != 0 ||
*endptr != '\0')
exit_input_error(n+1);
// update the maximum index
m = maximum(m, index);
// update the minimum index
min_index = minimum(min_index, index);
// free the small parts
for (j=0; j<n_small; j++) free(small_parts[j]);
free(small_parts);
// increment the nonzero counter
nnz++;
}
// free the big parts
for (i=0; i<n_big; i++) {
free(big_parts[i]);
}
free(big_parts);
// increment the number of observations
n++;
}
// rewind the file pointer
rewind(fid);
// check if we have enough labels
if (num_labels > 0 && num_labels != n) {
err("[GenSVM Error]: There are some lines with missing "
"labels. Please fix this before "
"continuing.\n");
exit(EXIT_FAILURE);
}
// don't forget the column of ones
nnz += n;
// deal with 0-based or 1-based indexing in the LibSVM file
if (min_index == 0) {
m++;
zero_based = true;
}
// check if sparsity is worth it
do_sparse = gensvm_nnz_comparison(nnz, n, m+1);
if (do_sparse) {
data->spZ = gensvm_init_sparse();
data->spZ->nnz = nnz;
data->spZ->n_row = n;
data->spZ->n_col = m+1;
data->spZ->values = Calloc(double, nnz);
data->spZ->ia = Calloc(long, n+1);
data->spZ->ja = Calloc(long, nnz);
data->spZ->ia[0] = 0;
} else {
data->RAW = Calloc(double, n*(m+1));
data->Z = data->RAW;
}
if (num_labels > 0)
data->y = Calloc(long, n);
K = 0;
cnt = 0;
for (i=0; i<n; i++) {
fgets(buf, GENSVM_MAX_LINE_LENGTH, fid);
// split the string in labels and/or index:value pairs
big_parts = str_split(buf, " \t", &n_big);
big_start = 0;
// get the label from the first part if it exists
if (!str_contains_char(big_parts[0], ':')) {
label = strtok(big_parts[0], " \t\n");
if (label == NULL) // empty line
exit_input_error(i+1);
// convert the label part to a number exit if there
// are errors
tmp = strtol(label, &endptr, 10);
if (endptr == label || *endptr != '\0')
exit_input_error(i+1);
// assign label to y
data->y[i] = tmp;
// keep track of maximum K
K = maximum(K, data->y[i]);
// increment big part index
big_start++;
}
row_cnt = 0;
// set the first element in the row to 1
if (do_sparse) {
data->spZ->values[cnt] = 1.0;
data->spZ->ja[cnt] = 0;
cnt++;
row_cnt++;
} else {
matrix_set(data->RAW, m+1, i, 0, 1.0);
}
// read the rest of the line
for (j=big_start; j<n_big; j++) {
if (!str_contains_char(big_parts[j], ':'))
continue;
// split the index:value pair
small_parts = str_split(big_parts[j], ":", &n_small);
if (n_small != 2)
exit_input_error(n+1);
// convert the index to a long
errno = 0;
index = strtol(small_parts[0], &endptr, 10);
// catch conversion errors
if (endptr == small_parts[0] || errno != 0 ||
*endptr != '\0')
exit_input_error(n+1);
// convert the value to a double
errno = 0;
value = strtod(small_parts[1], &endptr);
if (endptr == small_parts[1] || errno != 0 ||
(*endptr != '\0' && !isspace(*endptr)))
exit_input_error(n+1);
if (do_sparse) {
data->spZ->values[cnt] = value;
data->spZ->ja[cnt] = index + zero_based;
cnt++;
row_cnt++;
} else {
matrix_set(data->RAW, m+1, i,
index + zero_based, value);
}
// free the small parts
free(small_parts[0]);
free(small_parts[1]);
free(small_parts);
}
if (do_sparse) {
data->spZ->ia[i+1] = data->spZ->ia[i] + row_cnt;
}
// free the big parts
for (j=0; j<n_big; j++) {
free(big_parts[j]);
}
free(big_parts);
}
fclose(fid);
data->n = n;
data->m = m;
data->r = m;
data->K = K;
}
/**
* @brief Read model from file
*
* @details
* Read a GenModel from a model file. The GenModel struct must have been
* initalized elswhere. The model file is expected to follow the @ref
* spec_model_file. The easiest way to generate a model file is through
* gensvm_write_model(), which can for instance be used in trainGenSVM.c.
*
* @param[in,out] model initialized GenModel
* @param[in] model_filename filename of the model file
*
*/
void gensvm_read_model(struct GenModel *model, char *model_filename)
{
long i, j, nr = 0;
FILE *fid = NULL;
char buffer[GENSVM_MAX_LINE_LENGTH];
char data_filename[GENSVM_MAX_LINE_LENGTH];
double value = 0;
fid = fopen(model_filename, "r");
if (fid == NULL) {
// LCOV_EXCL_START
err("[GenSVM Error]: Couldn't open model file %s\n",
model_filename);
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
// skip the first four lines
for (i=0; i<4; i++)
next_line(fid, model_filename);
// read all model variables
model->p = get_fmt_double(fid, model_filename, "p = %lf");
model->lambda = get_fmt_double(fid, model_filename, "lambda = %lf");
model->kappa = get_fmt_double(fid, model_filename, "kappa = %lf");
model->epsilon = get_fmt_double(fid, model_filename, "epsilon = %lf");
model->weight_idx = (int) get_fmt_long(fid, model_filename,
"weight_idx = %li");
// skip to data section
for (i=0; i<2; i++)
next_line(fid, model_filename);
// read filename of data file
if (fgets(buffer, GENSVM_MAX_LINE_LENGTH, fid) == NULL) {
// LCOV_EXCL_START
err("[GenSVM Error]: Error reading from model file %s\n",
model_filename);
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
sscanf(buffer, "filename = %s\n", data_filename);
model->data_file = Calloc(char, GENSVM_MAX_LINE_LENGTH);
strcpy(model->data_file, data_filename);
// read all data variables
model->n = get_fmt_long(fid, model_filename, "n = %li\n");
model->m = get_fmt_long(fid, model_filename, "m = %li\n");
model->K = get_fmt_long(fid, model_filename, "K = %li\n");
// skip to output
for (i=0; i<2; i++)
next_line(fid, model_filename);
// read the matrix V and check for consistency
model->V = Malloc(double, (model->m+1)*(model->K-1));
for (i=0; i<model->m+1; i++) {
for (j=0; j<model->K-1; j++) {
nr += fscanf(fid, "%lf ", &value);
matrix_set(model->V, model->K-1, i, j, value);
}
}
if (nr != (model->m+1)*(model->K-1)) {
// LCOV_EXCL_START
err("[GenSVM Error] Error reading from model file %s. "
"Not enough elements of V found.\n",
model_filename);
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
}
/**
* @brief Write model to file
*
* @details
* Write a GenModel to a file. The current time is specified in the file in
* UTC + offset. The model file further corresponds to the @ref
* spec_model_file.
*
* @param[in] model GenModel which contains an estimate for
* GenModel::V
* @param[in] output_filename the output file to write the model to
*
*/
void gensvm_write_model(struct GenModel *model, char *output_filename)
{
FILE *fid = NULL;
long i, j;
char timestr[GENSVM_MAX_LINE_LENGTH];
// open output file
fid = fopen(output_filename, "w");
if (fid == NULL) {
// LCOV_EXCL_START
err("[GenSVM Error]: Error opening output file %s\n",
output_filename);
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
gensvm_time_string(timestr);
// Write output to file
fprintf(fid, "Output file for GenSVM (version %1.1f)\n", VERSION);
fprintf(fid, "Generated on: %s\n\n", timestr);
fprintf(fid, "Model:\n");
fprintf(fid, "p = %15.16f\n", model->p);
fprintf(fid, "lambda = %15.16f\n", model->lambda);
fprintf(fid, "kappa = %15.16f\n", model->kappa);
fprintf(fid, "epsilon = %g\n", model->epsilon);
fprintf(fid, "weight_idx = %i\n", model->weight_idx);
fprintf(fid, "\n");
fprintf(fid, "Data:\n");
fprintf(fid, "filename = %s\n", model->data_file);
fprintf(fid, "n = %li\n", model->n);
fprintf(fid, "m = %li\n", model->m);
fprintf(fid, "K = %li\n", model->K);
fprintf(fid, "\n");
fprintf(fid, "Output:\n");
for (i=0; i<model->m+1; i++) {
for (j=0; j<model->K-1; j++) {
if (j > 0)
fprintf(fid, " ");
fprintf(fid, "%+15.16f", matrix_get(model->V,
model->K-1, i, j));
}
fprintf(fid, "\n");
}
fclose(fid);
}
/**
* @brief Write predictions to file
*
* @details
* Write the given predictions to an output file, such that the resulting file
* corresponds to the @ref spec_data_file.
*
* @param[in] data GenData with the original instances
* @param[in] predy predictions of the class labels of the
* instances in the given GenData. Note that the
* order of the instances is assumed to be the
* same.
* @param[in] output_filename the file to which the predictions are written
*
*/
void gensvm_write_predictions(struct GenData *data, long *predy,
char *output_filename)
{
long i, j;
FILE *fid = NULL;
fid = fopen(output_filename, "w");
if (fid == NULL) {
// LCOV_EXCL_START
err("[GenSVM Error]: Error opening output file %s\n",
output_filename);
exit(EXIT_FAILURE);
// LCOV_EXCL_STOP
}
fprintf(fid, "%li\n", data->n);
fprintf(fid, "%li\n", data->m);
for (i=0; i<data->n; i++) {
for (j=0; j<data->m; j++)
fprintf(fid, "%.16f ", matrix_get(data->Z, data->m+1, i,
j+1));
fprintf(fid, "%li\n", predy[i]);
}
fclose(fid);
}
/**
* @brief Get time string with UTC offset
*
* @details
* Create a string for the current system time. Include an offset of UTC for
* consistency. The format of the generated string is "DDD MMM D HH:MM:SS
* YYYY (UTC +HH:MM)", e.g. "Fri Aug 9, 12:34:56 2013 (UTC +02:00)".
*
* @param[in,out] buffer allocated string buffer, on exit contains
* formatted string
*
*/
void gensvm_time_string(char *buffer)
{
int diff, hours, minutes;
char timestr[GENSVM_MAX_LINE_LENGTH];
time_t current_time, lt, gt;
struct tm *lclt = NULL;
// get current time (in epoch)
current_time = time(NULL);
if (current_time == ((time_t)-1)) {
// LCOV_EXCL_START
err("[GenSVM Error]: Failed to compute the current time.\n");
return;
// LCOV_EXCL_STOP
}
// convert time to local time and create a string
lclt = localtime(¤t_time);
strftime(timestr, GENSVM_MAX_LINE_LENGTH, "%c", lclt);
if (timestr == NULL) {
err("[GenSVM Error]: Failed to convert time to string.\n");
return;
}
// calculate the UTC offset including DST
lt = mktime(localtime(¤t_time));
gt = mktime(gmtime(¤t_time));
diff = -difftime(gt, lt);
hours = (diff/3600);
minutes = (diff%3600)/60;
if (lclt->tm_isdst == 1)
hours++;
sprintf(buffer, "%s (UTC %+03i:%02i)", timestr, hours, minutes);
}
|