aboutsummaryrefslogtreecommitdiff
path: root/src/gensvm_io.c
blob: 8d32f70bd760ddfc74f9ad1c84b9ff4a0541d1bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/**
 * @file gensvm_io.c
 * @author Gertjan van den Burg
 * @date January, 2014
 * @brief Functions for input and output of data and model files
 *
 * @details
 * This file contains functions for reading and writing model files, and data
 * files. 
 *
 */

#include "gensvm.h"
#include "gensvm_io.h"
#include "gensvm_matrix.h"
#include "strutil.h"
#include "timer.h"

/**
 * @brief Read data from file
 * 
 * @details
 * Read the data from the data_file. The data matrix X is augmented
 * with a column of ones, to get the matrix Z. The data is expected
 * to follow a specific format, which is specified in the @ref spec_data_file.
 * The class labels are corrected internally to correspond to the interval 
 * [1 .. K], where K is the total number of classes.
 *
 * @todo
 * Make sure that this function allows datasets without class labels for
 * testing.
 *
 * @param[in,out] 	dataset 	initialized GenData struct
 * @param[in] 		data_file 	filename of the data file.
 */
void gensvm_read_data(struct GenData *dataset, char *data_file)
{
	FILE *fid;
	long i, j;
	long n, m; // dimensions of data
	long nr = 0; // used to check consistency of data
	double value;
	long K = 0;
	long min_y = 1000000;

	char buf[MAX_LINE_LENGTH];

	if ((fid = fopen(data_file, "r")) == NULL) {
		fprintf(stderr, "\nERROR: datafile %s could not be opened.\n",
				data_file);
		exit(0);
	}

	// Read data dimensions
	nr += fscanf(fid, "%ld", &n);
	nr += fscanf(fid, "%ld", &m);

	// Allocate memory
	dataset->RAW = Malloc(double, n*(m+1));

	// Read first line of data
	for (j=1; j<m+1; j++) {
		nr += fscanf(fid, "%lf", &value);
		matrix_set(dataset->RAW, n, 0, j, value);
	}

	// Check if there is a label at the end of the line
	if (fgets(buf, MAX_LINE_LENGTH, fid) == NULL) {
		fprintf(stderr, "ERROR: No label found on first line.\n");
		exit(1);
	}
	if (sscanf(buf, "%lf", &value) > 0) {
		dataset->y = Malloc(long, n);
		dataset->y[0] = value;
	} else if (dataset->y != NULL) {
		free(dataset->y);
		dataset->y = NULL;
	}

	// Read the rest of the file
	for (i=1; i<n; i++) {
		for (j=1; j<m+1; j++) {
			nr += fscanf(fid, "%lf", &value);
			matrix_set(dataset->RAW, m+1, i, j, value);
		}
		if (dataset->y != NULL) {
			nr += fscanf(fid, "%lf", &value);
			dataset->y[i] = (long) value;
			K = maximum(K, value);
			min_y = minimum(min_y, value);
		}
	}
	fclose(fid);

	// Correct labels: must be in [1, K]
	if (min_y == 0) {
		for (i=0; i<n; i++)
			dataset->y[i]++;
		K++;
	} else if (min_y < 0 ) {
		fprintf(stderr, "ERROR: wrong class labels in %s, minimum "
				"value is: %ld\n",
				data_file, min_y);
		exit(0);
	}

	if (nr < n * m) {
		fprintf(stderr, "ERROR: not enough data found in %s\n", 
				data_file);
		exit(0);
	}
	
	// Set the column of ones
	for (i=0; i<n; i++)
		matrix_set(dataset->RAW, m+1, i, 0, 1.0);

	dataset->n = n;
	dataset->m = m;
	dataset->r = m;
	dataset->K = K;
	dataset->Z = dataset->RAW;
}


/**
 * @brief Read model from file
 *
 * @details
 * Read a GenModel from a model file. The GenModel struct must have been
 * initalized elswhere. The model file is expected to follow the @ref
 * spec_model_file. The easiest way to generate a model file is through
 * gensvm_write_model(), which can for instance be used in trainGenSVM.c.
 *
 * @param[in,out] 	model 		initialized GenModel
 * @param[in] 		model_filename 	filename of the model file
 *
 */
void gensvm_read_model(struct GenModel *model, char *model_filename)
{
	long i, j, nr = 0;
	FILE *fid;
	char buffer[MAX_LINE_LENGTH];
	char data_filename[MAX_LINE_LENGTH];
	double value = 0;

	fid = fopen(model_filename, "r");
	if (fid == NULL) {
		fprintf(stderr, "Error opening model file %s\n", 
				model_filename);
		exit(1);
	}
	// skip the first four lines
	for (i=0; i<4; i++)
		next_line(fid, model_filename);

	// read all model variables
	model->p = get_fmt_double(fid, model_filename, "p = %lf");
	model->lambda = get_fmt_double(fid, model_filename, "lambda = %lf");
	model->kappa = get_fmt_double(fid, model_filename, "kappa = %lf");
	model->epsilon = get_fmt_double(fid, model_filename, "epsilon = %lf");
	model->weight_idx = (int) get_fmt_long(fid, model_filename, 
			"weight_idx = %li");

	// skip to data section
	for (i=0; i<2; i++)
		next_line(fid, model_filename);

	// read filename of data file
	if (fgets(buffer, MAX_LINE_LENGTH, fid) == NULL) {
		fprintf(stderr, "Error reading model file %s\n", 
				model_filename);
		exit(1);
	}
	sscanf(buffer, "filename = %s\n", data_filename);
	model->data_file = data_filename;

	// read all data variables
	model->n = get_fmt_long(fid, model_filename, "n = %li\n");
	model->m = get_fmt_long(fid, model_filename, "m = %li\n");
	model->K = get_fmt_long(fid, model_filename, "K = %li\n");

	// skip to output
	for (i=0; i<2; i++)
		next_line(fid, model_filename);

	// read the matrix V and check for consistency
	model->V = Malloc(double, (model->m+1)*(model->K-1));
	for (i=0; i<model->m+1; i++) {
		for (j=0; j<model->K-1; j++) {
			nr += fscanf(fid, "%lf ", &value);
			matrix_set(model->V, model->K-1, i, j, value);
		}
	}
	if (nr != (model->m+1)*(model->K-1)) {
		fprintf(stderr, "Error reading model file %s. "
				"Not enough elements of V found.\n", 
				model_filename);
		exit(1);
	}
}

/**
 * @brief Write model to file
 *
 * @details
 * Write a GenModel to a file. The current time is specified in the file in
 * UTC + offset. The model file further corresponds to the @ref
 * spec_model_file.
 *
 * @param[in] 	model 		GenModel which contains an estimate for 
 * 				GenModel::V
 * @param[in] 	output_filename the output file to write the model to
 *
 */
void gensvm_write_model(struct GenModel *model, char *output_filename)
{
	FILE *fid;
	long i, j;
	char timestr[MAX_LINE_LENGTH];

	// open output file
	fid = fopen(output_filename, "w");
	if (fid == NULL) {
		fprintf(stderr, "Error opening output file %s", 
				output_filename);
		exit(1);
	}
	get_time_string(timestr);

	// Write output to file
	fprintf(fid, "Output file for GenSVM (version %1.1f)\n", VERSION);
	fprintf(fid, "Generated on: %s\n\n", timestr);
	fprintf(fid, "Model:\n");
	fprintf(fid, "p = %15.16f\n", model->p);
	fprintf(fid, "lambda = %15.16f\n", model->lambda);
	fprintf(fid, "kappa = %15.16f\n", model->kappa);
	fprintf(fid, "epsilon = %g\n", model->epsilon);
	fprintf(fid, "weight_idx = %i\n", model->weight_idx);
	fprintf(fid, "\n");
	fprintf(fid, "Data:\n");
	fprintf(fid, "filename = %s\n", model->data_file);
	fprintf(fid, "n = %li\n", model->n);
	fprintf(fid, "m = %li\n", model->m);
	fprintf(fid, "K = %li\n", model->K);
	fprintf(fid, "\n");
	fprintf(fid, "Output:\n");
	for (i=0; i<model->m+1; i++) {
		for (j=0; j<model->K-1; j++) {
			fprintf(fid, "%+15.16f ", 
					matrix_get(model->V, 
						model->K-1, i, j));
		}
		fprintf(fid, "\n");
	}

	fclose(fid);
}

/**
 * @brief Write predictions to file
 *
 * @details
 * Write the given predictions to an output file, such that the resulting file
 * corresponds to the @ref spec_data_file. 
 *
 * @param[in] 	data 		GenData with the original instances
 * @param[in] 	predy 		predictions of the class labels of the 
 * 				instances in the given GenData. Note that the
 * 				order of the instances is assumed to be the
 * 				same.
 * @param[in] 	output_filename the file to which the predictions are written
 *
 */
void gensvm_write_predictions(struct GenData *data, long *predy, 
		char *output_filename)
{
	long i, j;
	FILE *fid;

	fid = fopen(output_filename, "w");
	if (fid == NULL) {
		fprintf(stderr, "Error opening output file %s", 
				output_filename);
		exit(1);
	}
	
	fprintf(fid, "%li\n", data->n);
	fprintf(fid, "%li\n", data->m);

	for (i=0; i<data->n; i++) {
		for (j=0; j<data->m; j++) 
			fprintf(fid, "%f ", 
					matrix_get(data->Z, 
						data->m+1, i, j+1));
		fprintf(fid, "%li\n", predy[i]);
	}

	fclose(fid);
}