aboutsummaryrefslogtreecommitdiff
path: root/src/gensvm_init.c
blob: e0f44c1664575467491350a453164f7153c2f320 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/**
 * @file gensvm_init.c
 * @author Gertjan van den Burg
 * @date January 7, 2014
 * @brief Functions for initializing model and data structures
 *
 * @details
 * This file contains functions for initializing a GenModel instance
 * and a GenData instance. In addition, default values for these
 * structures are defined here (and only here). Functions for allocating
 * memory for the model structure and freeing of the model and data structures
 * are also included.
 *
 */

#include "gensvm_init.h"
#include "gensvm_print.h"

/**
 * @brief Seed the matrix V from an existing model or using rand
 *
 * @details
 * The matrix V must be seeded before the main_loop() can start.
 * This can be done by either seeding it with random numbers or
 * using the solution from a previous model on the same dataset
 * as initial seed. The latter option usually allows for a
 * significant improvement in the number of iterations necessary
 * because the seeded model V is closer to the optimal V.
 *
 * @param[in] 		from_model 	GenModel from which to copy V
 * @param[in,out] 	to_model 	GenModel to which V will be copied
 */
void gensvm_init_V(struct GenModel *from_model,
	       	struct GenModel *to_model, struct GenData *data)
{
	long i, j, k, jj_start, jj_end, jj;
	double cmin, cmax, value, rnd;
	double *col_min = NULL,
	       *col_max = NULL;

	long n = data->n;
	long m = data->m;
	long K = data->K;

	if (from_model == NULL) {
		col_min = Calloc(double, m+1);
		col_max = Calloc(double, m+1);
		for (j=0; j<m+1; j++) {
			col_min[j] = 1.0e100;
			col_max[j] = -1.0e100;
		}

		if (data->Z == NULL) {
			// sparse matrix
			int *visit_count = Calloc(int, m+1);
			for (i=0; i<n; i++) {
				jj_start = data->spZ->ia[i];
				jj_end = data->spZ->ia[i+1];
				for (jj=jj_start; jj<jj_end; jj++) {
					j = data->spZ->ja[jj];
					value = data->spZ->values[jj];

					col_min[j] = minimum(col_min[j], value);
					col_max[j] = maximum(col_max[j], value);
					visit_count[j]++;
				}
			}
			// correction in case the minimum or maximum is 0
			for (j=0; j<m+1; j++) {
				if (visit_count[j] < n) {
					col_min[j] = minimum(col_min[j], 0.0);
					col_max[j] = maximum(col_max[j], 0.0);
				}
			}
			free(visit_count);
		} else {
			// dense matrix
			for (i=0; i<n; i++) {
				for (j=0; j<m+1; j++) {
					value = matrix_get(data->Z, m+1, i, j);
					col_min[j] = minimum(col_min[j], value);
					col_max[j] = maximum(col_max[j], value);
				}
			}
		}
		for (j=0; j<m+1; j++) {
			cmin = (fabs(col_min[j]) < 1e-10) ? -1 : col_min[j];
			cmax = (fabs(col_max[j]) < 1e-10) ? 1 : col_max[j];
			for (k=0; k<K-1; k++) {
				rnd = ((double) rand()) / ((double) RAND_MAX);
				value = 1.0/cmin + (1.0/cmax - 1.0/cmin)*rnd;
				matrix_set(to_model->V, K-1, j, k, value);
			}
		}
		free(col_min);
		free(col_max);
	} else {
		for (i=0; i<m+1; i++)
			for (j=0; j<K-1; j++) {
				value = matrix_get(from_model->V, K-1, i, j);
				matrix_set(to_model->V, K-1, i, j, value);
			}
	}
}

/**
 * @brief Initialize instance weights
 *
 * @details
 * Instance weights can for instance be used to add additional weights to
 * instances of certain classes. Two default weight possibilities are
 * implemented here. The first is unit weights, where each instance gets
 * weight 1.
 *
 * The second are group size correction weights, which are calculated as
 * @f[
 * 	\rho_i = \frac{n}{Kn_k} ,
 * @f]
 * where @f$ n_k @f$ is the number of instances in group @f$ k @f$ and
 * @f$ y_i = k @f$.
 *
 * @param[in] 		data 	GenData with the dataset
 * @param[in,out] 	model 	GenModel with the weight specification. On
 * 				exit GenModel::rho contains the instance
 * 				weights.
 */
void gensvm_initialize_weights(struct GenData *data, struct GenModel *model)
{
	long *groups = NULL;
	long i;

	long n = model->n;
	long K = model->K;

	if (model->weight_idx == 1) {
		for (i=0; i<n; i++)
			model->rho[i] = 1.0;
	}
	else if (model->weight_idx == 2) {
		groups = Calloc(long, K);
		for (i=0; i<n; i++)
			groups[data->y[i]-1]++;
		for (i=0; i<n; i++)
			model->rho[i] = ((double) n)/((double) (
						groups[data->y[i]-1]*K));
	} else {
		// LCOV_EXCL_START
		err("[GenSVM Error]: Unknown weight specification.\n");
		exit(EXIT_FAILURE);
		// LCOV_EXCL_STOP
	}
	free(groups);
}