aboutsummaryrefslogtreecommitdiff
path: root/src/gensvm_gridsearch.c
blob: e6adf8babf81e02642fbbee70e46ed9d5e9c10ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/**
 * @file gensvm_gridsearch.c
 * @author G.J.J. van den Burg
 * @date 2014-01-07
 * @brief Functions for finding the optimal parameters for the dataset
 *
 * @details
 * The GenSVM algorithm takes a number of parameters. The functions in
 * this file are used to find the optimal parameters.
 *
 * @copyright
 Copyright 2016, G.J.J. van den Burg.

 This file is part of GenSVM.

 GenSVM is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 GenSVM is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with GenSVM. If not, see <http://www.gnu.org/licenses/>.

 */

#include "gensvm_gridsearch.h"

extern FILE *GENSVM_OUTPUT_FILE;

/**
 * @brief Initialize a GenQueue from a Training instance
 *
 * @details
 * A Training instance describes the grid to search over. This funtion
 * creates all tasks that need to be performed and adds these to
 * a GenQueue. Each task contains a pointer to the train and test datasets
 * which are supplied. Note that the tasks are created in a specific order of
 * the parameters, to ensure that the GenModel::V of a previous parameter
 * set provides the best possible initial estimate of GenModel::V for the next
 * parameter set.
 *
 * @param[in] 	grid 	Training struct describing the grid search
 * @param[in] 	queue 		pointer to a GenQueue that will be used to
 * 				add the tasks to
 * @param[in] 	train_data 	GenData of the training set
 * @param[in] 	test_data 	GenData of the test set
 *
 */
void gensvm_fill_queue(struct GenGrid *grid, struct GenQueue *queue,
		struct GenData *train_data, struct GenData *test_data)
{
	long i, j, k;
	long N, cnt = 0;
	struct GenTask *task = NULL;
	queue->i = 0;

	N = grid->Np;
	N *= grid->Nl;
	N *= grid->Nk;
	N *= grid->Ne;
	N *= grid->Nw;
	// these parameters are not necessarily non-zero
	N *= grid->Ng > 0 ? grid->Ng : 1;
	N *= grid->Nc > 0 ? grid->Nc : 1;
	N *= grid->Nd > 0 ? grid->Nd : 1;

	queue->tasks = Calloc(struct GenTask *, N);
	queue->N = N;

	// initialize all tasks
	for (i=0; i<N; i++) {
		task = gensvm_init_task();
		task->ID = i;
		task->train_data = train_data;
		task->test_data = test_data;
		task->folds = grid->folds;
		task->kerneltype = grid->kerneltype;
		queue->tasks[i] = task;
	}

	// These loops mimick a large nested for loop. The advantage is that
	// Nd, Nc and Ng which are on the outside of the nested for loop can
	// now be zero, without large modification (see below). Whether this
	// is indeed better than the nested for loop has not been tested.
	cnt = 1;
	i = 0;
	while (i < N) {
		for (j=0; j<grid->Np; j++) {
			for (k=0; k<cnt; k++) {
				queue->tasks[i]->p = grid->ps[j];
				i++;
			}
		}
	}

	cnt *= grid->Np;
	i = 0;
	while (i < N) {
		for (j=0; j<grid->Nl; j++) {
			for (k=0; k<cnt; k++) {
				queue->tasks[i]->lambda =
					grid->lambdas[j];
				i++;
			}
		}
	}

	cnt *= grid->Nl;
	i = 0;
	while (i < N) {
		for (j=0; j<grid->Nk; j++) {
			for (k=0; k<cnt; k++) {
				queue->tasks[i]->kappa = grid->kappas[j];
				i++;
			}
		}
	}

	cnt *= grid->Nk;
	i = 0;
	while (i < N) {
		for (j=0; j<grid->Nw; j++) {
			for (k=0; k<cnt; k++) {
				queue->tasks[i]->weight_idx =
					grid->weight_idxs[j];
				i++;
			}
		}
	}

	cnt *= grid->Nw;
	i = 0;
	while (i < N) {
		for (j=0; j<grid->Ne; j++) {
			for (k=0; k<cnt; k++) {
				queue->tasks[i]->epsilon = grid->epsilons[j];
				i++;
			}
		}
	}

	cnt *= grid->Ne;
	i = 0;
	while (i < N && grid->Ng > 0) {
		for (j=0; j<grid->Ng; j++) {
			for (k=0; k<cnt; k++) {
				queue->tasks[i]->gamma = grid->gammas[j];
				i++;
			}
		}
	}

	cnt *= grid->Ng > 0 ? grid->Ng : 1;
	i = 0;
	while (i < N && grid->Nc > 0) {
		for (j=0; j<grid->Nc; j++) {
			for (k=0; k<cnt; k++) {
				queue->tasks[i]->coef = grid->coefs[j];
				i++;
			}
		}
	}

	cnt *= grid->Nc > 0 ? grid->Nc : 1;
	i = 0;
	while (i < N && grid->Nd > 0) {
		for (j=0; j<grid->Nd; j++) {
			for (k=0; k<cnt; k++) {
				queue->tasks[i]->degree = grid->degrees[j];
				i++;
			}
		}
	}
}

/**
 * @brief Check if the kernel parameters change between tasks
 *
 * @details
 * In the current strategy for training the kernel matrix is decomposed once,
 * and tasks with the same kernel settings are performed sequentially. When a
 * task needs to be done with different kernel parameters, the kernel matrix
 * needs to be recalculated. This function is used to check whether this is
 * the case.
 *
 * @param[in] 	newtask 	the next task
 * @param[in] 	oldtask 	the old task
 * @return 			whether the kernel needs to be reevaluated
 */
bool gensvm_kernel_changed(struct GenTask *newtask, struct GenTask *oldtask)
{
	if (oldtask == NULL)
		return true;
	if (newtask->kerneltype != oldtask->kerneltype) {
		return true;
	} else if (newtask->kerneltype == K_POLY) {
		if (newtask->gamma != oldtask->gamma)
			return true;
		if (newtask->coef != oldtask->coef)
			return true;
		if (newtask->degree != oldtask->degree)
			return true;
		return false;
	} else if (newtask->kerneltype == K_RBF) {
		if (newtask->gamma != oldtask->gamma)
			return true;
		return false;
	} else if (newtask->kerneltype == K_SIGMOID) {
		if (newtask->gamma != oldtask->gamma)
			return true;
		if (newtask->coef != oldtask->coef)
			return true;
		return false;
	}
	return false;
}

/**
 * @brief Compute the kernels for the folds of the train and test datasets
 *
 * @details
 * When the kernel parameters change in a kernel grid search, the kernel
 * pre- and post-processing has to be done for the new kernel parameters. This 
 * is done here for each of the folds. Each of the training folds is 
 * preprocessed, and each of the test folds is postprocessed.
 *
 * @param[in] 		folds 		number of cross validation folds
 * @param[in] 		model 		GenModel with new kernel parameters
 * @param[in,out] 	train_folds 	array of train datasets
 * @param[in,out] 	test_folds 	array of test datasets
 *
 */
void gensvm_kernel_folds(long folds, struct GenModel *model,
		struct GenData **train_folds, struct GenData **test_folds)
{
	long f;

	if (model->kerneltype != K_LINEAR)
		note("Computing kernel ... ");
	for (f=0; f<folds; f++) {
		if (train_folds[f]->Z != train_folds[f]->RAW)
			free(train_folds[f]->Z);
		if (test_folds[f]->Z != test_folds[f]->RAW)
			free(test_folds[f]->Z);
		gensvm_kernel_preprocess(model, train_folds[f]);
		gensvm_kernel_postprocess(model, train_folds[f],
				test_folds[f]);
	}
	if (model->kerneltype != K_LINEAR)
		note("done.\n");
}

/**
 * @brief Run the grid search for a GenQueue
 *
 * @details
 * Given a GenQueue of GenTask struct to be trained, a grid search is launched to
 * find the optimal parameter configuration. As is also done within
 * cross_validation(), the optimal weights of one parameter set are used as
 * initial estimates for GenModel::V in the next parameter set. Note that to
 * optimally exploit this feature of the optimization algorithm, the order in
 * which tasks are considered is important. This is considered in
 * make_queue().
 *
 * The performance found by cross validation is stored in the GenTask struct.
 *
 * @param[in,out] 	q 	GenQueue with GenTask instances to run
 */
void gensvm_train_queue(struct GenQueue *q)
{
	long f, folds;
	double perf, duration, current_max = 0;
	struct GenTask *task = get_next_task(q);
	struct GenTask *prevtask = NULL;
	struct GenModel *model = gensvm_init_model();
	struct timespec main_s, main_e, loop_s, loop_e;

	folds = task->folds;

	model->n = 0;
	model->m = task->train_data->m;
	model->K = task->train_data->K;
	gensvm_allocate_model(model);
	gensvm_init_V(NULL, model, task->train_data);

	long *cv_idx = Calloc(long, task->train_data->n);
	gensvm_make_cv_split(task->train_data->n, task->folds, cv_idx);

	struct GenData **train_folds = Malloc(struct GenData *, task->folds);
	struct GenData **test_folds = Malloc(struct GenData *, task->folds);
	for (f=0; f<folds; f++) {
		train_folds[f] = gensvm_init_data();
		test_folds[f] = gensvm_init_data();
		gensvm_get_tt_split(task->train_data, train_folds[f],
				test_folds[f], cv_idx, f);
	}

	Timer(main_s);
	while (task) {
		gensvm_task_to_model(task, model);
		if (gensvm_kernel_changed(task, prevtask)) {
			gensvm_kernel_folds(task->folds, model, train_folds,
					test_folds);
		}

		Timer(loop_s);
		perf = gensvm_cross_validation(model, train_folds, test_folds,
				folds, task->train_data->n);
		Timer(loop_e);

		current_max = maximum(current_max, perf);
		duration = gensvm_elapsed_time(&loop_s, &loop_e);

		gensvm_gridsearch_progress(task, q->N, perf, duration,
				current_max);

		q->tasks[task->ID]->performance = perf;
		prevtask = task;
		task = get_next_task(q);
	}
	Timer(main_e);

	note("\nTotal elapsed training time: %8.8f seconds\n",
			gensvm_elapsed_time(&main_s, &main_e));

	gensvm_free_model(model);
	for (f=0; f<folds; f++) {
		gensvm_free_data(train_folds[f]);
		gensvm_free_data(test_folds[f]);
	}
	free(train_folds);
	free(test_folds);
	free(cv_idx);
}

/**
 * @brief Print the description of the current task on screen
 *
 * @details
 * To track the progress of the grid search the parameters of the current task
 * are written to the output specified in GENSVM_OUTPUT_FILE. Since the
 * parameters differ with the specified kernel, this function writes a
 * parameter string depending on which kernel is used.
 *
 * @param[in] 	task 		the GenTask specified
 * @param[in] 	N 		total number of tasks
 * @param[in] 	perf 		performance of the current task
 * @param[in] 	duration 	time duration of the current task
 * @param[in] 	current_max 	current best performance
 *
 */
void gensvm_gridsearch_progress(struct GenTask *task, long N, double perf, 
		double duration, double current_max)
{
	char buffer[GENSVM_MAX_LINE_LENGTH];
	sprintf(buffer, "(%03li/%03li)\t", task->ID+1, N);
	if (task->kerneltype == K_POLY)
		sprintf(buffer + strlen(buffer), "d = %2.2f\t", task->degree);
	if (task->kerneltype == K_POLY || task->kerneltype == K_SIGMOID)
		sprintf(buffer + strlen(buffer), "c = %2.2f\t", task->coef);
	if (task->kerneltype == K_POLY || task->kerneltype == K_SIGMOID ||
			task->kerneltype == K_RBF)
		sprintf(buffer + strlen(buffer), "g = %3.3f\t", task->gamma);
	sprintf(buffer + strlen(buffer), "eps = %g\tw = %i\tk = %2.2f\t"
			"l = %f\tp = %2.2f\t", task->epsilon,
			task->weight_idx, task->kappa, task->lambda, task->p);
	note(buffer);
	note("\t%3.3f%% (%3.3fs)\t(best = %3.3f%%)\n", perf, duration, 
			current_max);
}