aboutsummaryrefslogtreecommitdiff
path: root/src/GenSVMtraintest.c
blob: 019972598998cf434bc11c9e54507eeba2c1272e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/**
 * @file GenSVMtraintest.c
 * @author Gertjan van den Burg
 * @date February, 2015
 * @brief Command line interface for training and testing with a GenSVM model
 *
 * @details
 * This is a command line program for training and testing on a single model
 * with specified model parameters.
 *
 */

#include <time.h>

#include "globals.h"
#include "gensvm.h"
#include "gensvm_io.h"
#include "gensvm_init.h"
#include "gensvm_kernel.h"
#include "gensvm_train.h"
#include "gensvm_pred.h"
#include "libGenSVM.h"
#include "gensvm_util.h"

#define MINARGS 2

extern FILE *GENSVM_OUTPUT_FILE;

// function declarations
void exit_with_help();
void parse_command_line(int argc, char **argv, struct GenModel *model,
		char **model_inputfile, char **training_inputfile,
		char **testing_inputfile, char **model_outputfile,
		char **prediction_outputfile);

void exit_with_help()
{
	printf("This is GenSVM, version %1.1f\n\n", VERSION);
	printf("Usage: ./gensvm [options] training_data [test_data]\n");
	printf("Options:\n");
	printf("-c coef : coefficient for the polynomial and sigmoid kernel\n");
	printf("-d degree : degree for the polynomial kernel\n");
	printf("-e epsilon : set the value of the stopping criterion\n");
	printf("-g gamma : parameter for the rbf, polynomial or sigmoid "
			"kernel\n");
	printf("-h | -help : print this help.\n");
	printf("-k kappa : set the value of kappa used in the Huber hinge\n");
	printf("-l lambda : set the value of lambda (lambda > 0)\n");
	printf("-s seed_model_file : use previous model as seed for V\n");
	printf("-m model_output_file : write model output to file\n");
	printf("-o prediction_output : write predictions of test data to "
			"file\n");
	printf("-p p-value : set the value of p in the lp norm "
			"(1.0 <= p <= 2.0)\n");
	printf("-q : quiet mode (no output)\n");
	printf("-r rho : choose the weigth specification (1 = unit, 2 = "
			"group)\n");
	printf("-t type: kerneltype (0=LINEAR, 1=POLY, 2=RBF, 3=SIGMOID)\n");

	exit(0);
}


int main(int argc, char **argv)
{
	bool with_test = false;
	long i, *predy = NULL;
	double performance;

	char *training_inputfile = NULL,
	     *testing_inputfile = NULL,
	     *model_inputfile = NULL,
	     *model_outputfile = NULL,
	     *prediction_outputfile = NULL;

	struct GenModel *model = gensvm_init_model();
	struct GenData *traindata = gensvm_init_data();
	struct GenData *testdata = gensvm_init_data();

	if (argc < MINARGS || gensvm_check_argv(argc, argv, "-help")
		       	|| gensvm_check_argv_eq(argc, argv, "-h"))
		exit_with_help();
	parse_command_line(argc, argv, model, &model_inputfile,
		       	&training_inputfile, &testing_inputfile,
		       	&model_outputfile, &prediction_outputfile);
	if (testing_inputfile != NULL)
		with_test = true;

	// read data from files
	gensvm_read_data(traindata, training_inputfile);
	if (with_test)
		gensvm_read_data(testdata, testing_inputfile);

	// copy dataset parameters to model
	model->n = traindata->n;
	model->m = traindata->m;
	model->K = traindata->K;
	model->data_file = training_inputfile;

	// allocate model
	gensvm_allocate_model(model);

	// run pre/post processing in case of kernels
	gensvm_kernel_preprocess(model, traindata);
	if (with_test)
		gensvm_kernel_postprocess(model, traindata, testdata);

	// reallocate model in case of kernel dimension reduction
	gensvm_reallocate_model(model, traindata->n, traindata->r);

	// initialize weights
	gensvm_initialize_weights(traindata, model);

	// seed the random number generator
	srand(time(NULL));

	// load a seed model from file if it is specified
	if (gensvm_check_argv_eq(argc, argv, "-s")) {
		struct GenModel *seed_model = gensvm_init_model();
		gensvm_read_model(seed_model, model_inputfile);
		gensvm_seed_model_V(seed_model, model, traindata);
		gensvm_free_model(seed_model);
	} else {
		gensvm_seed_model_V(NULL, model, traindata);
	}

	// start training
	gensvm_optimize(model, traindata);

	// if we also have a test set, predict labels and write to predictions
	// to an output file if specified
	if (with_test) {
		// predict labels
		predy = Calloc(long, testdata->n);
		gensvm_predict_labels(testdata, model, predy);

		if (testdata->y != NULL) {
			performance = gensvm_prediction_perf(testdata, predy);
			note("Predictive performance: %3.2f%%\n", performance);
		}

		// if output file is specified, write predictions to it
		if (gensvm_check_argv_eq(argc, argv, "-o")) {
			gensvm_write_predictions(testdata, predy,
				       	prediction_outputfile);
			note("Prediction written to: %s\n",
				       	prediction_outputfile);
		} else {
			for (i=0; i<testdata->n; i++)
				printf("%li ", predy[i]);
			printf("\n");
		}
	}

	// write model to output file if necessary
	if (gensvm_check_argv_eq(argc, argv, "-m")) {
		gensvm_write_model(model, model_outputfile);
		note("Model written to: %s\n", model_outputfile);
	}

	// free everything
	gensvm_free_model(model);
	gensvm_free_data(traindata);
	gensvm_free_data(testdata);
	free(training_inputfile);
	free(testing_inputfile);
	free(model_inputfile);
	free(model_outputfile);
	free(prediction_outputfile);

	free(predy);

	return 0;
}

void parse_command_line(int argc, char **argv, struct GenModel *model,
		char **model_inputfile, char **training_inputfile,
	       	char **testing_inputfile, char **model_outputfile,
	       	char **prediction_outputfile)
{
	int i;
	double gamma = 1.0,
	       degree = 2.0,
	       coef = 0.0;

	GENSVM_OUTPUT_FILE = stdout;

	// parse options
	for (i=1; i<argc; i++) {
		if (argv[i][0] != '-') break;
		if (++i>=argc) {
			exit_with_help();
		}
		switch (argv[i-1][1]) {
			case 'c':
				coef = atof(argv[i]);
				break;
			case 'd':
				degree = atof(argv[i]);
				break;
			case 'e':
				model->epsilon = atof(argv[i]);
				break;
			case 'g':
				gamma = atof(argv[i]);
				break;
			case 'k':
				model->kappa = atof(argv[i]);
				break;
			case 'l':
				model->lambda = atof(argv[i]);
				break;
			case 's':
				(*model_inputfile) = Malloc(char,
					       	strlen(argv[i])+1);
				strcpy((*model_inputfile), argv[i]);
				break;
			case 'm':
				(*model_outputfile) = Malloc(char,
						strlen(argv[i])+1);
				strcpy((*model_outputfile), argv[i]);
				break;
			case 'o':
				(*prediction_outputfile) = Malloc(char,
						strlen(argv[i])+1);
				strcpy((*prediction_outputfile), argv[i]);
				break;
			case 'p':
				model->p = atof(argv[i]);
				break;
			case 'r':
				model->weight_idx = atoi(argv[i]);
				break;
			case 't':
				model->kerneltype = atoi(argv[i]);
				break;
			case 'q':
				GENSVM_OUTPUT_FILE = NULL;
				i--;
				break;
			default:
				fprintf(stderr, "Unknown option: -%c\n",
						argv[i-1][1]);
				exit_with_help();
		}
	}
	if (i >= argc)
		exit_with_help();

	(*training_inputfile) = Malloc(char, strlen(argv[i])+1);
	strcpy((*training_inputfile), argv[i]);
	if (i+2 == argc) {
		(*testing_inputfile) = Malloc(char, strlen(argv[i])+1);
		strcpy((*testing_inputfile), argv[i+1]);
	}

	// set kernel parameters
	switch (model->kerneltype) {
		case K_LINEAR:
			break;
		case K_POLY:
			model->kernelparam = Calloc(double, 3);
			model->kernelparam[0] = gamma;
			model->kernelparam[1] = coef;
			model->kernelparam[2] = degree;
			break;
		case K_RBF:
			model->kernelparam = Calloc(double, 1);
			model->kernelparam[0] = gamma;
			break;
		case K_SIGMOID:
			model->kernelparam = Calloc(double, 1);
			model->kernelparam[0] = gamma;
			model->kernelparam[1] = coef;
	}
}