1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/**
* @file GenSVMtraintest.c
* @author G.J.J. van den Burg
* @date 2015-02-01
* @brief Command line interface for training and testing with a GenSVM model
*
* @details
* This is a command line program for training and testing on a single model
* with specified model parameters.
*
* @copyright
Copyright 2016, G.J.J. van den Burg.
This file is part of GenSVM.
GenSVM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GenSVM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GenSVM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gensvm_checks.h"
#include "gensvm_cmdarg.h"
#include "gensvm_io.h"
#include "gensvm_train.h"
#include "gensvm_predict.h"
/**
* Minimal number of command line arguments
*/
#define MINARGS 2
extern FILE *GENSVM_OUTPUT_FILE;
extern FILE *GENSVM_ERROR_FILE;
// function declarations
void exit_with_help(char **argv);
void parse_command_line(int argc, char **argv, struct GenModel *model,
char **model_inputfile, char **training_inputfile,
char **testing_inputfile, char **model_outputfile,
char **prediction_outputfile);
/**
* @brief Help function
*
* @details
* Print help for this program and exit. Note that the VERSION is defined in
* the Makefile.
*
* @param[in] argv command line arguments
*
*/
void exit_with_help(char **argv)
{
printf("This is GenSVM, version %1.1f\n\n", VERSION);
printf("Usage: %s [options] training_data [test_data]\n\n", argv[0]);
printf("Options:\n");
printf("--------\n");
printf("-c coef : coefficient for the polynomial and "
"sigmoid kernel\n");
printf("-d degree : degree for the polynomial kernel\n");
printf("-e epsilon : set the value of the stopping "
"criterion (epsilon > 0)\n");
printf("-g gamma : parameter for the rbf, polynomial or "
"sigmoid kernel\n");
printf("-h | -help : print this help.\n");
printf("-k kappa : set the value of kappa used in the "
"Huber hinge (kappa > -1.0)\n");
printf("-l lambda : set the value of lambda "
"(lambda > 0)\n");
printf("-m model_output_file : write model output to file "
"(not saved if no file provided)\n");
printf("-o prediction_output : write predictions of test data to "
"file (uses stdout if not provided)\n");
printf("-p p-value : set the value of p in the lp norm "
"(1.0 <= p <= 2.0)\n");
printf("-q : quiet mode (no output, not even "
"errors!)\n");
printf("-r rho : choose the weigth specification "
"(1 = unit, 2 = group)\n");
printf("-s seed_model_file : use previous model as seed for V\n");
printf("-t type : kerneltype (0=LINEAR, 1=POLY, 2=RBF, "
"3=SIGMOID)\n");
printf("-x : data files are in LibSVM/SVMlight "
"format\n");
printf("\n");
exit(EXIT_FAILURE);
}
/**
* @brief Main interface function for GenSVMtraintest
*
* @details
* Main interface for the GenSVMtraintest commandline program.
*
* @param[in] argc number of command line arguments
* @param[in] argv array of command line arguments
*
* @return exit status
*/
int main(int argc, char **argv)
{
bool libsvm_format = false;
long i, *predy = NULL;
double performance;
char *training_inputfile = NULL,
*testing_inputfile = NULL,
*model_inputfile = NULL,
*model_outputfile = NULL,
*prediction_outputfile = NULL;
struct GenModel *model = gensvm_init_model();
struct GenModel *seed_model = NULL;
struct GenData *traindata = gensvm_init_data();
struct GenData *testdata = gensvm_init_data();
if (argc < MINARGS || gensvm_check_argv(argc, argv, "-help")
|| gensvm_check_argv_eq(argc, argv, "-h"))
exit_with_help(argv);
// parse command line arguments
parse_command_line(argc, argv, model, &model_inputfile,
&training_inputfile, &testing_inputfile,
&model_outputfile, &prediction_outputfile);
libsvm_format = gensvm_check_argv(argc, argv, "-x");
// read data from file
if (libsvm_format)
gensvm_read_data_libsvm(traindata, training_inputfile);
else
gensvm_read_data(traindata, training_inputfile);
// check labels for consistency
if (!gensvm_check_outcome_contiguous(traindata)) {
err("[GenSVM Error]: Class labels should start from 1 and "
"have no gaps. Please reformat your data.\n");
exit(EXIT_FAILURE);
}
// save data filename to model
model->data_file = Calloc(char, GENSVM_MAX_LINE_LENGTH);
strcpy(model->data_file, training_inputfile);
// check if we are sparse and want nonlinearity
if (traindata->Z == NULL && model->kerneltype != K_LINEAR) {
err("[GenSVM Warning]: Sparse matrices with nonlinear kernels "
"are not yet supported. Dense matrices will "
"be used.\n");
traindata->RAW = gensvm_sparse_to_dense(traindata->spZ);
traindata->Z = traindata->RAW;
gensvm_free_sparse(traindata->spZ);
}
// seed the random number generator
srand(time(NULL));
// load a seed model from file if it is specified
if (gensvm_check_argv_eq(argc, argv, "-s")) {
seed_model = gensvm_init_model();
gensvm_read_model(seed_model, model_inputfile);
}
// train the GenSVM model
gensvm_train(model, traindata, seed_model);
// if we also have a test set, predict labels and write to predictions
// to an output file if specified
if (testing_inputfile != NULL) {
// read the test data
if (libsvm_format)
gensvm_read_data_libsvm(testdata, testing_inputfile);
else
gensvm_read_data(testdata, testing_inputfile);
// check if we are sparse and want nonlinearity
if (testdata->Z == NULL && model->kerneltype != K_LINEAR) {
err("[GenSVM Warning]: Sparse matrices with nonlinear "
"kernels are not yet supported. Dense "
"matrices will be used.\n");
testdata->Z = gensvm_sparse_to_dense(testdata->spZ);
gensvm_free_sparse(testdata->spZ);
}
gensvm_kernel_postprocess(model, traindata, testdata);
// predict labels
predy = Calloc(long, testdata->n);
gensvm_predict_labels(testdata, model, predy);
if (testdata->y != NULL) {
performance = gensvm_prediction_perf(testdata, predy);
note("Predictive performance: %3.2f%%\n", performance);
}
// if output file is specified, write predictions to it
if (gensvm_check_argv_eq(argc, argv, "-o")) {
gensvm_write_predictions(testdata, predy,
prediction_outputfile);
note("Prediction written to: %s\n",
prediction_outputfile);
} else {
for (i=0; i<testdata->n; i++)
printf("%li ", predy[i]);
printf("\n");
}
}
// write model to output file if necessary
if (gensvm_check_argv_eq(argc, argv, "-m")) {
gensvm_write_model(model, model_outputfile);
note("Model written to: %s\n", model_outputfile);
}
// free everything
gensvm_free_model(model);
gensvm_free_model(seed_model);
gensvm_free_data(traindata);
gensvm_free_data(testdata);
free(training_inputfile);
free(testing_inputfile);
free(model_inputfile);
free(model_outputfile);
free(prediction_outputfile);
free(predy);
return 0;
}
/**
* @brief Exit with warning about invalid parameter value.
*
* @param[in] label name of the parameter
* @param[in] argv command line arguments
*/
void exit_invalid_param(const char *label, char **argv)
{
fprintf(stderr, "Invalid parameter value for %s.\n\n", label);
exit_with_help(argv);
}
/**
* @brief Parse the command line arguments
*
* @details
* For a full overview of the command line arguments and their meaning see
* exit_with_help(). This function furthermore sets the default output streams
* to stdout/stderr, and initializes the kernel parameters if none are
* supplied: gamma = 1.0, degree = 2.0, coef = 0.0.
*
* @param[in] argc number of command line arguments
* @param[in] argv array of command line arguments
* @param[in] model initialized GenModel struct
* @param[out] model_inputfile filename for the seed model
* @param[out] training_inputfile filename for the training data
* @param[out] testing_inputfile filename for the test data
* @param[out] model_outputfile filename for the output model
* @param[out] prediction_outputfile filename for the predictions
*
*/
void parse_command_line(int argc, char **argv, struct GenModel *model,
char **model_inputfile, char **training_inputfile,
char **testing_inputfile, char **model_outputfile,
char **prediction_outputfile)
{
int i;
double gamma = 1.0,
degree = 2.0,
coef = 0.0;
GENSVM_OUTPUT_FILE = stdout;
GENSVM_ERROR_FILE = stderr;
// parse options
// note: flags that don't have an argument should decrement i
for (i=1; i<argc; i++) {
if (argv[i][0] != '-') break;
if (++i>=argc) {
exit_with_help(argv);
}
switch (argv[i-1][1]) {
case 'c':
coef = atof(argv[i]);
break;
case 'd':
degree = atof(argv[i]);
break;
case 'e':
model->epsilon = atof(argv[i]);
if (model->epsilon <= 0)
exit_invalid_param("epsilon", argv);
break;
case 'g':
gamma = atof(argv[i]);
break;
case 'k':
model->kappa = atof(argv[i]);
if (model->kappa <= -1.0)
exit_invalid_param("kappa", argv);
break;
case 'l':
model->lambda = atof(argv[i]);
if (model->lambda <= 0)
exit_invalid_param("lambda", argv);
break;
case 's':
(*model_inputfile) = Malloc(char,
strlen(argv[i])+1);
strcpy((*model_inputfile), argv[i]);
break;
case 'm':
(*model_outputfile) = Malloc(char,
strlen(argv[i])+1);
strcpy((*model_outputfile), argv[i]);
break;
case 'o':
(*prediction_outputfile) = Malloc(char,
strlen(argv[i])+1);
strcpy((*prediction_outputfile), argv[i]);
break;
case 'p':
model->p = atof(argv[i]);
if (model->p < 1.0 || model->p > 2.0)
exit_invalid_param("p", argv);
break;
case 'r':
model->weight_idx = atoi(argv[i]);
break;
case 't':
model->kerneltype = atoi(argv[i]);
break;
case 'q':
GENSVM_OUTPUT_FILE = NULL;
GENSVM_ERROR_FILE = NULL;
i--;
break;
case 'x':
i--;
break;
default:
// this one should always print explicitly to
// stderr, even if '-q' is supplied, because
// otherwise you can't debug cmdline flags.
fprintf(stderr, "Unknown option: -%c\n",
argv[i-1][1]);
exit_with_help(argv);
}
}
if (i >= argc)
exit_with_help(argv);
(*training_inputfile) = Malloc(char, strlen(argv[i])+1);
strcpy((*training_inputfile), argv[i]);
if (i+2 == argc) {
(*testing_inputfile) = Malloc(char, strlen(argv[i])+1);
strcpy((*testing_inputfile), argv[i+1]);
}
// set kernel parameters
switch (model->kerneltype) {
case K_LINEAR:
break;
case K_POLY:
model->kernelparam = Calloc(double, 3);
model->kernelparam[0] = gamma;
model->kernelparam[1] = coef;
model->kernelparam[2] = degree;
break;
case K_RBF:
model->kernelparam = Calloc(double, 1);
model->kernelparam[0] = gamma;
break;
case K_SIGMOID:
model->kernelparam = Calloc(double, 1);
model->kernelparam[0] = gamma;
model->kernelparam[1] = coef;
}
}
|