diff options
Diffstat (limited to 'tests/aux')
| -rw-r--r-- | tests/aux/test_eigendecomp.m | 2 | ||||
| -rw-r--r-- | tests/aux/test_kernel_pre.m | 46 | ||||
| -rw-r--r-- | tests/aux/test_train_kernel.m | 30 |
3 files changed, 38 insertions, 40 deletions
diff --git a/tests/aux/test_eigendecomp.m b/tests/aux/test_eigendecomp.m index 921f44b..f3ff4ab 100644 --- a/tests/aux/test_eigendecomp.m +++ b/tests/aux/test_eigendecomp.m @@ -23,7 +23,7 @@ ratios = eigenvalues ./ eigenvalues(end, end); cutoff = 1e-2; realP = fliplr(P(:, ratios > cutoff)); -realSigma = flipud(eigenvalues(ratios > cutoff)); +realSigma = sqrt(flipud(eigenvalues(ratios > cutoff))); r = sum(ratios > cutoff); diff --git a/tests/aux/test_kernel_pre.m b/tests/aux/test_kernel_pre.m index a1c8337..69f6f1e 100644 --- a/tests/aux/test_kernel_pre.m +++ b/tests/aux/test_kernel_pre.m @@ -1,32 +1,32 @@ function test_kernel_pre() - + kerneltype = 'rbf'; rand('state', 123456); n = 10; m = 5; cutoff = 5e-3; - + X = rand(n, m); Z = [ones(n, 1), X]; - + set_matrix(Z, "data->Z", "data->m+1"); - + K = zeros(n, n); if strcmp(kerneltype, 'poly') - # Polynomial kernel - # (gamma * <x_1, x_2> + c)^d + % Polynomial kernel + % (gamma * <x_1, x_2> + c)^d gamma = 1.5; c = 3.0; d = 1.78; - + for ii=1:n for jj=1:n K(ii, jj) = (gamma * (X(ii, :) * X(jj, :)') + c)^d; end end elseif strcmp(kerneltype, 'rbf') - # RBF kernel - # exp(-gamma * norm(x1 - x2)^2) + % RBF kernel + % exp(-gamma * norm(x1 - x2)^2) gamma = 0.348 for ii=1:n for jj=1:n @@ -34,8 +34,8 @@ function test_kernel_pre() end end elseif strcmp(kerneltype, 'sigmoid') - # Sigmoid kernel - # tanh(gamma * <x_1, x_2> + c) + % Sigmoid kernel + % tanh(gamma * <x_1, x_2> + c) gamma = 1.23; c = 1.6; for ii=1:n @@ -44,29 +44,27 @@ function test_kernel_pre() end end end - - K(1, 2) - [P, Sigma] = eig(K); + [P, values] = eig(K); - eigenvalues = diag(Sigma); + eigenvalues = diag(values); ratios = eigenvalues ./ eigenvalues(end, end); - + realP = fliplr(P(:, ratios > cutoff)); - realSigma = flipud(eigenvalues(ratios > cutoff)); - + realSigma = sqrt(flipud(eigenvalues(ratios > cutoff))); + assert_matrix(realSigma, "data->Sigma", "1"); - + r = sum(ratios > cutoff); fprintf("mu_assert(data->r == %i);\n", r); - + M = realP * diag(realSigma); - + newZ = [ones(n, 1) M]; assert_matrix_abs(newZ, "data->Z", "data->r+1"); - + assert_matrix(Z, "data->RAW", "data->m+1"); - + end function set_matrix(A, name, cols) @@ -98,4 +96,4 @@ function assert_matrix_abs(A, name, cols) end end fprintf("\n"); -end
\ No newline at end of file +end diff --git a/tests/aux/test_train_kernel.m b/tests/aux/test_train_kernel.m index 7bf14b8..b561bd4 100644 --- a/tests/aux/test_train_kernel.m +++ b/tests/aux/test_train_kernel.m @@ -1,21 +1,21 @@ function [V] = test_train_kernel() - + clear; more off; rand('state', 654321); - + n = 10; m = 5; classes = 4; cutoff = 5e-3; - + X = rand(n, m); Z = [ones(n, 1), X]; set_matrix(Z, "data->Z", "data->m+1"); - + y = [2 1 3 2 3 2 4 1 3 4]; set_matrix(y, "data->y", "1"); - + p = 1.2143; kappa = 0.90298; lambda = 0.00219038; @@ -36,24 +36,24 @@ function [V] = test_train_kernel() eigenvalues = diag(Sigma); ratios = eigenvalues ./ eigenvalues(end, end); - + realP = fliplr(P(:, ratios > cutoff)); - realSigma = flipud(eigenvalues(ratios > cutoff)); - + realSigma = sqrt(flipud(eigenvalues(ratios > cutoff))); + assert_matrix(realSigma, "data->Sigma", "1"); - + r = sum(ratios > cutoff); fprintf("mu_assert(data->r == %i);\n", r); - + M = realP * diag(realSigma); size(M) - + assert_matrix(Z, "data->RAW", "data->m+1"); - - seedV = zeros(size(M, 2) + 1, classes - 1); + + seedV = zeros(size(M, 2) + 1, classes - 1); [W, t] = msvmmaj(M, y, rho, p, kappa, lambda, epsilon, 'show', 0, seedV); V = [t'; W]; - + fprintf('\n'); assert_matrix_abs(V, "model->V", "model->K-1"); @@ -89,4 +89,4 @@ function assert_matrix_abs(A, name, cols) end end fprintf("\n"); -end
\ No newline at end of file +end |
