diff options
Diffstat (limited to 'src/msvmmaj_train_dataset.c')
| -rw-r--r-- | src/msvmmaj_train_dataset.c | 81 |
1 files changed, 1 insertions, 80 deletions
diff --git a/src/msvmmaj_train_dataset.c b/src/msvmmaj_train_dataset.c index 3f8cb74..8d23684 100644 --- a/src/msvmmaj_train_dataset.c +++ b/src/msvmmaj_train_dataset.c @@ -294,7 +294,7 @@ void consistency_repeats(struct Queue *q, long repeats, TrainType traintype) double p, pi, pr, pt, boundary, *time, *std, *mean, *perf; struct Queue *nq = Malloc(struct Queue, 1); struct MajModel *model = msvmmaj_init_model(); - struct Task *task = Malloc(struct Task, 1); + struct Task *task; clock_t loop_s, loop_e; // calculate the performance percentile (Matlab style) @@ -407,7 +407,6 @@ void consistency_repeats(struct Queue *q, long repeats, TrainType traintype) free(nq->tasks); free(nq); - free(task); free(model); free(perf); free(std); @@ -450,7 +449,6 @@ double cross_validation(struct MajModel *model, struct MajData *data, msvmmaj_make_cv_split(data->n, folds, cv_idx); for (f=0; f<folds; f++) { - note("."); msvmmaj_get_tt_split(data, train_data, test_data, cv_idx, f); msvmmaj_make_kernel(model, train_data); @@ -542,72 +540,6 @@ void start_training_cv(struct Queue *q) msvmmaj_free_model(model); } -void msvmmaj_reallocate_model(struct MajModel *model, long n, long m) -{ - long K = model->K; - - if (model->n == n && model->m == m) - return; - if (model->n != n) { - model->UU = (double *) realloc(model->UU, - n*K*(K-1)*sizeof(double)); - if (model->UU == NULL) { - fprintf(stderr, "Failed to reallocate UU\n"); - exit(1); - } - - model->Q = (double *) realloc(model->Q, n*K*sizeof(double)); - if (model->Q == NULL) { - fprintf(stderr, "Failed to reallocate Q\n"); - exit(1); - } - - model->H = (double *) realloc(model->H, n*K*sizeof(double)); - if (model->H == NULL) { - fprintf(stderr, "Failed to reallocate H\n"); - exit(1); - } - - model->R = (double *) realloc(model->R, n*K*sizeof(double)); - if (model->R == NULL) { - fprintf(stderr, "Failed to reallocate R\n"); - exit(1); - } - - model->rho = (double *) realloc(model->rho, n*sizeof(double)); - if (model->rho == NULL) { - fprintf(stderr, "Failed to reallocte rho\n"); - exit(1); - } - - model->n = n; - } - if (model->m != m) { - model->W = (double *) realloc(model->W, - m*(K-1)*sizeof(double)); - if (model->W == NULL) { - fprintf(stderr, "Failed to reallocate W\n"); - exit(1); - } - - model->V = (double *) realloc(model->V, - (m+1)*(K-1)*sizeof(double)); - if (model->V == NULL) { - fprintf(stderr, "Failed to reallocate V\n"); - exit(1); - } - - model->Vbar = (double *) realloc(model->Vbar, - (m+1)*(K-1)*sizeof(double)); - if (model->Vbar == NULL) { - fprintf(stderr, "Failed to reallocate Vbar\n"); - exit(1); - } - - model->m = m; - } -} - /** * @brief Run the grid search for a train/test dataset * @@ -707,24 +639,13 @@ void start_training_tt(struct Queue *q) */ void free_queue(struct Queue *q) { - printf("\there 0\n"); long i; - printf("\there 1\n"); for (i=0; i<q->N; i++) { - printf("\there 2\n"); - fflush(stdout); free(q->tasks[i]->kernelparam); - printf("\there 3\n"); - fflush(stdout); free(q->tasks[i]); - printf("\there 4\n"); - fflush(stdout); } - printf("\there 5\n"); free(q->tasks); - printf("\there 6\n"); free(q); - printf("\there 7\n"); } /** |
