aboutsummaryrefslogtreecommitdiff
path: root/src/gensvm_train_dataset.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gensvm_train_dataset.c')
-rw-r--r--src/gensvm_train_dataset.c748
1 files changed, 748 insertions, 0 deletions
diff --git a/src/gensvm_train_dataset.c b/src/gensvm_train_dataset.c
new file mode 100644
index 0000000..3034bb4
--- /dev/null
+++ b/src/gensvm_train_dataset.c
@@ -0,0 +1,748 @@
+/**
+ * @file gensvm_train_dataset.c
+ * @author Gertjan van den Burg
+ * @date January, 2014
+ * @brief Functions for finding the optimal parameters for the dataset
+ *
+ * @details
+ * The GenSVM algorithm takes a number of parameters. The functions in
+ * this file are used to find the optimal parameters.
+ */
+
+#include <math.h>
+#include <time.h>
+
+#include "crossval.h"
+#include "libGenSVM.h"
+#include "gensvm.h"
+#include "gensvm_init.h"
+#include "gensvm_kernel.h"
+#include "gensvm_matrix.h"
+#include "gensvm_train.h"
+#include "gensvm_train_dataset.h"
+#include "gensvm_pred.h"
+#include "util.h"
+#include "timer.h"
+
+extern FILE *GENSVM_OUTPUT_FILE;
+
+/**
+ * @brief Initialize a Queue from a Training instance
+ *
+ * @details
+ * A Training instance describes the grid to search over. This funtion
+ * creates all tasks that need to be performed and adds these to
+ * a Queue. Each task contains a pointer to the train and test datasets
+ * which are supplied. Note that the tasks are created in a specific order of
+ * the parameters, to ensure that the GenModel::V of a previous parameter
+ * set provides the best possible initial estimate of GenModel::V for the next
+ * parameter set.
+ *
+ * @param[in] training Training struct describing the grid search
+ * @param[in] queue pointer to a Queue that will be used to
+ * add the tasks to
+ * @param[in] train_data GenData of the training set
+ * @param[in] test_data GenData of the test set
+ *
+ */
+void make_queue(struct Training *training, struct Queue *queue,
+ struct GenData *train_data, struct GenData *test_data)
+{
+ long i, j, k;
+ long N, cnt = 0;
+ struct Task *task;
+ queue->i = 0;
+
+ N = training->Np;
+ N *= training->Nl;
+ N *= training->Nk;
+ N *= training->Ne;
+ N *= training->Nw;
+ // these parameters are not necessarily non-zero
+ N *= training->Ng > 0 ? training->Ng : 1;
+ N *= training->Nc > 0 ? training->Nc : 1;
+ N *= training->Nd > 0 ? training->Nd : 1;
+
+ queue->tasks = Malloc(struct Task *, N);
+ queue->N = N;
+
+ // initialize all tasks
+ for (i=0; i<N; i++) {
+ task = Malloc(struct Task, 1);
+ task->ID = i;
+ task->train_data = train_data;
+ task->test_data = test_data;
+ task->folds = training->folds;
+ task->kerneltype = training->kerneltype;
+ task->kernelparam = Calloc(double, training->Ng +
+ training->Nc + training->Nd);
+ queue->tasks[i] = task;
+ }
+
+ // These loops mimick a large nested for loop. The advantage is that
+ // Nd, Nc and Ng which are on the outside of the nested for loop can
+ // now be zero, without large modification (see below). Whether this
+ // is indeed better than the nested for loop has not been tested.
+ cnt = 1;
+ i = 0;
+ while (i < N )
+ for (j=0; j<training->Np; j++)
+ for (k=0; k<cnt; k++) {
+ queue->tasks[i]->p = training->ps[j];
+ i++;
+ }
+
+ cnt *= training->Np;
+ i = 0;
+ while (i < N )
+ for (j=0; j<training->Nl; j++)
+ for (k=0; k<cnt; k++) {
+ queue->tasks[i]->lambda =
+ training->lambdas[j];
+ i++;
+ }
+
+ cnt *= training->Nl;
+ i = 0;
+ while (i < N )
+ for (j=0; j<training->Nk; j++)
+ for (k=0; k<cnt; k++) {
+ queue->tasks[i]->kappa = training->kappas[j];
+ i++;
+ }
+
+ cnt *= training->Nk;
+ i = 0;
+ while (i < N )
+ for (j=0; j<training->Nw; j++)
+ for (k=0; k<cnt; k++) {
+ queue->tasks[i]->weight_idx =
+ training->weight_idxs[j];
+ i++;
+ }
+
+ cnt *= training->Nw;
+ i = 0;
+ while (i < N )
+ for (j=0; j<training->Ne; j++)
+ for (k=0; k<cnt; k++) {
+ queue->tasks[i]->epsilon =
+ training->epsilons[j];
+ i++;
+ }
+
+ cnt *= training->Ne;
+ i = 0;
+ while (i < N && training->Ng > 0)
+ for (j=0; j<training->Ng; j++)
+ for (k=0; k<cnt; k++) {
+ queue->tasks[i]->kernelparam[0] =
+ training->gammas[j];
+ i++;
+ }
+
+ cnt *= training->Ng > 0 ? training->Ng : 1;
+ i = 0;
+ while (i < N && training->Nc > 0)
+ for (j=0; j<training->Nc; j++)
+ for (k=0; k<cnt; k++) {
+ queue->tasks[i]->kernelparam[1] =
+ training->coefs[j];
+ i++;
+ }
+
+ cnt *= training->Nc > 0 ? training->Nc : 1;
+ i = 0;
+ while (i < N && training->Nd > 0)
+ for (j=0; j<training->Nd; j++)
+ for (k=0; k<cnt; k++) {
+ queue->tasks[i]->kernelparam[2] =
+ training->degrees[j];
+ i++;
+ }
+}
+
+/**
+ * @brief Get new Task from Queue
+ *
+ * @details
+ * Return a pointer to the next Task in the Queue. If no Task instances are
+ * left, NULL is returned. The internal counter Queue::i is used for finding
+ * the next Task.
+ *
+ * @param[in] q Queue instance
+ * @returns pointer to next Task
+ *
+ */
+struct Task *get_next_task(struct Queue *q)
+{
+ long i = q->i;
+ if (i < q->N) {
+ q->i++;
+ return q->tasks[i];
+ }
+ return NULL;
+}
+
+/**
+ * @brief Comparison function for Tasks based on performance
+ *
+ * @details
+ * To be able to sort Task structures on the performance of their specific
+ * set of parameters, this comparison function is implemented. Task structs
+ * are sorted with highest performance first.
+ *
+ * @param[in] elem1 Task 1
+ * @param[in] elem2 Task 2
+ * @returns result of inequality of Task 1 performance over
+ * Task 2 performance
+ */
+int tasksort(const void *elem1, const void *elem2)
+{
+ const struct Task *t1 = (*(struct Task **) elem1);
+ const struct Task *t2 = (*(struct Task **) elem2);
+ return (t1->performance > t2->performance);
+}
+
+/**
+ * @brief Comparison function for doubles
+ *
+ * @details
+ * Similar to tasksort() only now for two doubles.
+ *
+ * @param[in] elem1 number 1
+ * @param[in] elem2 number 2
+ * @returns comparison of number 1 larger than number 2
+ */
+int doublesort(const void *elem1, const void *elem2)
+{
+ const double t1 = (*(double *) elem1);
+ const double t2 = (*(double *) elem2);
+ return t1 > t2;
+}
+
+/**
+ * @brief Calculate the percentile of an array of doubles
+ *
+ * @details
+ * The percentile of performance is used to find the top performing
+ * configurations. Since no standard definition of the percentile exists, we
+ * use the method used in MATLAB and Octave. Since calculating the percentile
+ * requires a sorted list of the values, a local copy is made first.
+ *
+ * @param[in] values array of doubles
+ * @param[in] N length of the array
+ * @param[in] p percentile to calculate ( 0 <= p <= 1.0 ).
+ * @returns the p-th percentile of the values
+ */
+double prctile(double *values, long N, double p)
+{
+ long i;
+ double pi, pr, boundary;
+ double *local = Malloc(double, N);
+ for (i=0; i<N; i++)
+ local[i] = values[i];
+
+ qsort(local, N, sizeof(double), doublesort);
+ p = p*N + 0.5;
+ pi = maximum(minimum(floor(p), N-1), 1);
+ pr = maximum(minimum(p - pi, 1), 0);
+ boundary = (1 - pr)*local[((long) pi)-1] + pr*local[((long) pi)];
+
+ free(local);
+
+ return boundary;
+}
+
+/**
+ * @brief Run repeats of the Task structs in Queue to find the best
+ * configuration
+ *
+ * @details
+ * The best performing tasks in the supplied Queue are found by taking those
+ * Task structs that have a performance greater or equal to the 95% percentile
+ * of the performance of all tasks. These tasks are then gathered in a new
+ * Queue. For each of the tasks in this new Queue the cross validation run is
+ * repeated a number of times.
+ *
+ * For each of the Task configurations that are repeated the mean performance,
+ * standard deviation of the performance and the mean computation time are
+ * reported.
+ *
+ * Finally, the overall best tasks are written to the specified output. These
+ * tasks are selected to have both the highest mean performance, as well as the
+ * smallest standard deviation in their performance. This is done as follows.
+ * First the 99th percentile of task performance and the 1st percentile of
+ * standard deviation is calculated. If a task exists for which the mean
+ * performance of the repeats and the standard deviation equals these values
+ * respectively, this task is found to be the best and is written to the
+ * output. If no such task exists, the 98th percentile of performance and the
+ * 2nd percentile of standard deviation is considered. This is repeated until
+ * an interval is found which contains tasks. If one or more tasks are found,
+ * this loop stops.
+ *
+ * @param[in] q Queue of Task structs which have already been
+ * run and have a Task::performance value
+ * @param[in] repeats Number of times to repeat the best
+ * configurations for consistency
+ * @param[in] traintype type of training to do (CV or TT)
+ *
+ */
+void consistency_repeats(struct Queue *q, long repeats, TrainType traintype)
+{
+ long i, r, N;
+ double p, pi, pr, pt, boundary, *time, *std, *mean, *perf;
+ struct Queue *nq = Malloc(struct Queue, 1);
+ struct GenModel *model = gensvm_init_model();
+ struct Task *task;
+ clock_t loop_s, loop_e;
+
+ // calculate the performance percentile (Matlab style)
+ qsort(q->tasks, q->N, sizeof(struct Task *), tasksort);
+ p = 0.95*q->N + 0.5;
+ pi = maximum(minimum(floor(p), q->N-1), 1);
+ pr = maximum(minimum(p - pi, 1), 0);
+ boundary = (1 - pr)*q->tasks[((long) pi)-1]->performance;
+ boundary += pr*q->tasks[((long) pi)]->performance;
+ note("boundary determined at: %f\n", boundary);
+
+ // find the number of tasks that perform at least as good as the 95th
+ // percentile
+ N = 0;
+ for (i=0; i<q->N; i++)
+ if (q->tasks[i]->performance >= boundary)
+ N++;
+ note("Number of items: %li\n", N);
+ std = Calloc(double, N);
+ mean = Calloc(double, N);
+ time = Calloc(double, N);
+ perf = Calloc(double, N*repeats);
+
+ // create a new task queue with the tasks which perform well
+ nq->tasks = Malloc(struct Task *, N);
+ for (i=q->N-1; i>q->N-N-1; i--)
+ nq->tasks[q->N-i-1] = q->tasks[i];
+ nq->N = N;
+ nq->i = 0;
+
+ // for each task run the consistency repeats
+ for (i=0; i<N; i++) {
+ task = get_next_task(nq);
+ make_model_from_task(task, model);
+
+ if (i == 0) {
+ model->n = 0;
+ model->m = task->train_data->m;
+ model->K = task->train_data->K;
+ gensvm_allocate_model(model);
+ gensvm_seed_model_V(NULL, model, task->train_data);
+ }
+
+ time[i] = 0.0;
+ note("(%02li/%02li:%03li)\t", i+1, N, task->ID);
+ for (r=0; r<repeats; r++) {
+ if (traintype == CV) {
+ loop_s = clock();
+ p = cross_validation(model, task->train_data,
+ task->folds);
+ loop_e = clock();
+ time[i] += elapsed_time(loop_s, loop_e);
+ matrix_set(perf, repeats, i, r, p);
+ mean[i] += p/((double) repeats);
+ } else {
+ note("Only cv is implemented\n");
+ exit(1);
+ }
+ note("%3.3f\t", p);
+ // this is done because if we reuse the V it's not a
+ // consistency check
+ gensvm_seed_model_V(NULL, model, task->train_data);
+ }
+ for (r=0; r<repeats; r++) {
+ std[i] += pow(matrix_get(
+ perf,
+ repeats,
+ i,
+ r) - mean[i],
+ 2.0);
+ }
+ if (r > 1) {
+ std[i] /= ((double) repeats) - 1.0;
+ std[i] = sqrt(std[i]);
+ } else
+ std[i] = 0.0;
+ note("(m = %3.3f, s = %3.3f, t = %3.3f)\n",
+ mean[i], std[i], time[i]);
+ }
+
+ // find the best overall configurations: those with high average
+ // performance and low deviation in the performance
+ note("\nBest overall configuration(s):\n");
+ note("ID\tweights\tepsilon\t\tp\t\tkappa\t\tlambda\t\t"
+ "mean_perf\tstd_perf\ttime_perf\n");
+ p = 0.0;
+ bool breakout = false;
+ while (breakout == false) {
+ pi = prctile(mean, N, (100.0-p)/100.0);
+ pr = prctile(std, N, p/100.0);
+ pt = prctile(time, N, p/100.0);
+ for (i=0; i<N; i++)
+ if ((pi - mean[i] < 0.0001) &&
+ (std[i] - pr < 0.0001) &&
+ (time[i] - pt < 0.0001)) {
+ note("(%li)\tw = %li\te = %f\tp = %f\t"
+ "k = %f\tl = %f\t"
+ "mean: %3.3f\tstd: %3.3f\t"
+ "time: %3.3f\n",
+ nq->tasks[i]->ID,
+ nq->tasks[i]->weight_idx,
+ nq->tasks[i]->epsilon,
+ nq->tasks[i]->p,
+ nq->tasks[i]->kappa,
+ nq->tasks[i]->lambda,
+ mean[i],
+ std[i],
+ time[i]);
+ breakout = true;
+ }
+ p += 1.0;
+ }
+
+ free(nq->tasks);
+ free(nq);
+ free(model);
+ free(perf);
+ free(std);
+ free(mean);
+ free(time);
+}
+
+/**
+ * @brief Run cross validation with a seed model
+ *
+ * @details
+ * This is an implementation of cross validation which uses the optimal
+ * parameters GenModel::V of a previous fold as initial conditions for
+ * GenModel::V of the next fold. An initial seed for V can be given through the
+ * seed_model parameter. If seed_model is NULL, random starting values are
+ * used.
+ *
+ * @param[in] model GenModel with the configuration to train
+ * @param[in] seed_model GenModel with a seed for GenModel::V
+ * @param[in] data GenData with the dataset
+ * @param[in] folds number of cross validation folds
+ * @returns performance (hitrate) of the configuration on
+ * cross validation
+ */
+double cross_validation(struct GenModel *model, struct GenData *data,
+ long folds)
+{
+ FILE *fid;
+
+ long f, *predy;
+ double performance, total_perf = 0;
+ struct GenData *train_data, *test_data;
+
+ long *cv_idx = Calloc(long, data->n);
+
+ train_data = gensvm_init_data();
+ test_data = gensvm_init_data();
+
+ // create splits
+ gensvm_make_cv_split(data->n, folds, cv_idx);
+
+ for (f=0; f<folds; f++) {
+ gensvm_get_tt_split(data, train_data, test_data, cv_idx, f);
+
+ gensvm_make_kernel(model, train_data);
+
+ // reallocate the model if necessary for the new train split
+ gensvm_reallocate_model(model, train_data->n, train_data->m);
+
+ gensvm_initialize_weights(train_data, model);
+
+ // train the model (without output)
+ fid = GENSVM_OUTPUT_FILE;
+ GENSVM_OUTPUT_FILE = NULL;
+ gensvm_optimize(model, train_data);
+ GENSVM_OUTPUT_FILE = fid;
+
+ // calculate prediction performance on test set
+ predy = Calloc(long, test_data->n);
+ gensvm_predict_labels(test_data, train_data, model, predy);
+ performance = gensvm_prediction_perf(test_data, predy);
+ total_perf += performance * test_data->n;
+
+ free(predy);
+ free(train_data->y);
+ free(train_data->Z);
+ free(test_data->y);
+ free(test_data->Z);
+ }
+
+ free(train_data);
+ free(test_data);
+
+ total_perf /= ((double) data->n);
+
+ return total_perf;
+}
+
+/**
+ * @brief Run the grid search for a cross validation dataset
+ *
+ * @details
+ * Given a Queue of Task struct to be trained, a grid search is launched to
+ * find the optimal parameter configuration. As is also done within
+ * cross_validation(), the optimal weights of one parameter set are used as
+ * initial estimates for GenModel::V in the next parameter set. Note that to
+ * optimally exploit this feature of the optimization algorithm, the order in
+ * which tasks are considered is important. This is considered in
+ * make_queue().
+ *
+ * The performance found by cross validation is stored in the Task struct.
+ *
+ * @param[in,out] q Queue with Task instances to run
+ */
+void start_training_cv(struct Queue *q)
+{
+ double perf, current_max = 0;
+ struct Task *task = get_next_task(q);
+ struct GenModel *model = gensvm_init_model();
+ clock_t main_s, main_e, loop_s, loop_e;
+
+ model->n = 0;
+ model->m = task->train_data->m;
+ model->K = task->train_data->K;
+ gensvm_allocate_model(model);
+ gensvm_seed_model_V(NULL, model, task->train_data);
+
+ main_s = clock();
+ while (task) {
+ print_progress_string(task, q->N);
+ make_model_from_task(task, model);
+
+ loop_s = clock();
+ perf = cross_validation(model, task->train_data, task->folds);
+ loop_e = clock();
+ current_max = maximum(current_max, perf);
+
+ note("\t%3.3f%% (%3.3fs)\t(best = %3.3f%%)\n", perf,
+ elapsed_time(loop_s, loop_e),
+ current_max);
+
+ q->tasks[task->ID]->performance = perf;
+ task = get_next_task(q);
+ }
+ main_e = clock();
+
+ note("\nTotal elapsed time: %8.8f seconds\n",
+ elapsed_time(main_s, main_e));
+
+ gensvm_free_model(model);
+}
+
+/**
+ * @brief Run the grid search for a train/test dataset
+ *
+ * @details
+ * This function is similar to start_training_cv(), except that the
+ * pre-determined training set is used only once, and the pre-determined test
+ * set is used for validation.
+ *
+ * @todo
+ * It would probably be better to train the model on the training set using
+ * cross validation and only use the test set when comparing with other
+ * methods. The way it is now, you're finding out which parameters predict
+ * _this_ test set best, which is not what you want. This function should
+ * therefore not be used and is considered deprecated, to be removed in the
+ * future .
+ *
+ * @param[in] q Queue with Task structs to run
+ *
+ */
+void start_training_tt(struct Queue *q)
+{
+ FILE *fid;
+
+ long c = 0;
+ long *predy;
+ double total_perf, current_max = 0;
+
+ struct Task *task = get_next_task(q);
+ struct GenModel *seed_model = gensvm_init_model();
+
+ clock_t main_s, main_e;
+ clock_t loop_s, loop_e;
+
+ seed_model->m = task->train_data->m;
+ seed_model->K = task->train_data->K;
+ gensvm_allocate_model(seed_model);
+ gensvm_seed_model_V(NULL, seed_model, task->train_data);
+
+ main_s = clock();
+ while (task) {
+ total_perf = 0;
+ note("(%li/%li)\tw = %li\te = %f\tp = %f\tk = %f\tl = %f\t",
+ c+1, q->N, task->weight_idx, task->epsilon,
+ task->p, task->kappa, task->lambda);
+ loop_s = clock();
+ struct GenModel *model = gensvm_init_model();
+ make_model_from_task(task, model);
+
+ model->n = task->train_data->n;
+ model->m = task->train_data->m;
+ model->K = task->train_data->K;
+
+ gensvm_allocate_model(model);
+ gensvm_initialize_weights(task->train_data, model);
+ gensvm_seed_model_V(seed_model, model, task->train_data);
+
+ fid = GENSVM_OUTPUT_FILE;
+ GENSVM_OUTPUT_FILE = NULL;
+ gensvm_optimize(model, task->train_data);
+ GENSVM_OUTPUT_FILE = fid;
+
+ predy = Calloc(long, task->test_data->n);
+ gensvm_predict_labels(task->test_data, task->train_data,
+ model, predy);
+ if (task->test_data->y != NULL)
+ total_perf = gensvm_prediction_perf(task->test_data,
+ predy);
+ gensvm_seed_model_V(model, seed_model, task->train_data);
+
+ gensvm_free_model(model);
+ free(predy);
+ note(".");
+ loop_e = clock();
+ current_max = maximum(current_max, total_perf);
+ note("\t%3.3f%% (%3.3fs)\t(best = %3.3f%%)\n", total_perf,
+ elapsed_time(loop_s, loop_e), current_max);
+ q->tasks[task->ID]->performance = total_perf;
+ task = get_next_task(q);
+ }
+ main_e = clock();
+
+ note("\nTotal elapsed time: %8.8f seconds\n",
+ elapsed_time(main_s, main_e));
+ free(task);
+ gensvm_free_model(seed_model);
+}
+
+/**
+ * @brief Free the Queue struct
+ *
+ * @details
+ * Freeing the allocated memory of the Queue means freeing every Task struct
+ * and then freeing the Queue.
+ *
+ * @param[in] q Queue to be freed
+ *
+ */
+void free_queue(struct Queue *q)
+{
+ long i;
+ for (i=0; i<q->N; i++) {
+ free(q->tasks[i]->kernelparam);
+ free(q->tasks[i]);
+ }
+ free(q->tasks);
+ free(q);
+}
+
+/**
+ * @brief Copy parameters from Task to GenModel
+ *
+ * @details
+ * A Task struct only contains the parameters of the GenModel to be estimated.
+ * This function is used to copy these parameters.
+ *
+ * @param[in] task Task instance with parameters
+ * @param[in,out] model GenModel to which the parameters are copied
+ */
+void make_model_from_task(struct Task *task, struct GenModel *model)
+{
+ // copy basic model parameters
+ model->weight_idx = task->weight_idx;
+ model->epsilon = task->epsilon;
+ model->p = task->p;
+ model->kappa = task->kappa;
+ model->lambda = task->lambda;
+
+ // copy kernel parameters
+ model->kerneltype = task->kerneltype;
+ model->kernelparam = task->kernelparam;
+}
+
+/**
+ * @brief Copy model parameters between two GenModel structs
+ *
+ * @details
+ * The parameters copied are GenModel::weight_idx, GenModel::epsilon,
+ * GenModel::p, GenModel::kappa, and GenModel::lambda.
+ *
+ * @param[in] from GenModel to copy parameters from
+ * @param[in,out] to GenModel to copy parameters to
+ */
+void copy_model(struct GenModel *from, struct GenModel *to)
+{
+ to->weight_idx = from->weight_idx;
+ to->epsilon = from->epsilon;
+ to->p = from->p;
+ to->kappa = from->kappa;
+ to->lambda = from->lambda;
+
+ to->kerneltype = from->kerneltype;
+ switch (to->kerneltype) {
+ case K_LINEAR:
+ break;
+ case K_POLY:
+ to->kernelparam = Malloc(double, 3);
+ to->kernelparam[0] = from->kernelparam[0];
+ to->kernelparam[1] = from->kernelparam[1];
+ to->kernelparam[2] = from->kernelparam[2];
+ break;
+ case K_RBF:
+ to->kernelparam = Malloc(double, 1);
+ to->kernelparam[0] = from->kernelparam[0];
+ break;
+ case K_SIGMOID:
+ to->kernelparam = Malloc(double, 2);
+ to->kernelparam[0] = from->kernelparam[0];
+ to->kernelparam[1] = from->kernelparam[1];
+ break;
+ }
+}
+
+/**
+ * @brief Print the description of the current task on screen
+ *
+ * @details
+ * To track the progress of the grid search the parameters of the current task
+ * are written to the output specified in GENSVM_OUTPUT_FILE. Since the
+ * parameters differ with the specified kernel, this function writes a
+ * parameter string depending on which kernel is used.
+ *
+ * @param[in] task the Task specified
+ * @param[in] N total number of tasks
+ *
+ */
+void print_progress_string(struct Task *task, long N)
+{
+ char buffer[MAX_LINE_LENGTH];
+ sprintf(buffer, "(%03li/%03li)\t", task->ID+1, N);
+ if (task->kerneltype == K_POLY)
+ sprintf(buffer + strlen(buffer), "d = %2.2f\t",
+ task->kernelparam[2]);
+ if (task->kerneltype == K_POLY || task->kerneltype == K_SIGMOID)
+ sprintf(buffer + strlen(buffer), "c = %2.2f\t",
+ task->kernelparam[1]);
+ if (task->kerneltype == K_POLY || task->kerneltype == K_SIGMOID ||
+ task->kerneltype == K_RBF)
+ sprintf(buffer + strlen(buffer), "g = %3.3f\t",
+ task->kernelparam[0]);
+ sprintf(buffer + strlen(buffer), "eps = %g\tw = %i\tk = %2.2f\t"
+ "l = %f\tp = %2.2f\t", task->epsilon,
+ task->weight_idx, task->kappa, task->lambda, task->p);
+ note(buffer);
+}