aboutsummaryrefslogtreecommitdiff
path: root/include/gensvm.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/gensvm.h')
-rw-r--r--include/gensvm.h105
1 files changed, 0 insertions, 105 deletions
diff --git a/include/gensvm.h b/include/gensvm.h
deleted file mode 100644
index 24708bc..0000000
--- a/include/gensvm.h
+++ /dev/null
@@ -1,105 +0,0 @@
-/**
- * @file gensvm.h
- * @author Gertjan van den Burg
- * @date August, 2013
- * @brief Definitions for common structures
- *
- * @details
- * Contains documentation and declarations of GenModel and GenData.
- *
- */
-
-#ifndef GENSVM_H
-#define GENSVM_H
-
-#include "types.h"
-
-/**
- * @brief A structure to represent a single GenSVM model.
- *
- */
-struct GenModel {
- int weight_idx;
- ///< which weights to use (1 = unit, 2 = group)
- long K;
- ///< number of classes in the dataset
- long n;
- ///< number of instances in the dataset
- long m;
- ///< number of predictor variables in the dataset
- double epsilon;
- ///< stopping criterion for the IM algorithm.
- double p;
- ///< parameter for the L-p norm in the loss function
- double kappa;
- ///< parameter for the Huber hinge function
- double lambda;
- ///< regularization parameter in the loss function
- double *W;
- ///< weight matrix
- double *t;
- ///< translation vector
- double *V;
- ///< augmented weight matrix
- double *Vbar;
- ///< augmented weight matrix from the previous iteration of the IM
- ///< algorithm
- double *U;
- ///< simplex matrix
- double *UU;
- ///< 3D simplex difference matrix
- double *Q;
- ///< error matrix
- double *H;
- ///< Huber weighted error matrix
- double *R;
- ///< 0-1 auixiliary matrix, this matrix is n x K, with for row i a 0 on
- ///< column y[i]-1, and 1 everywhere else.
- double *rho;
- ///< vector of instance weights
- double training_error;
- ///< loss function value after training has finished
- char *data_file;
- ///< filename of the data
- KernelType kerneltype;
- ///< type of kernel used in the model
- double *kernelparam;
- ///< array of kernel parameters, size depends on kernel type
-};
-
-/**
- * @brief A structure to represent the data.
- *
- * @param K number of classes
- * @param n number of instances
- * @param m number of predictors
- * @param *y pointer to vector of class labels
- * @param *Z pointer to augmented data matrix
- * @param *RAW pointer to augmented raw data matrix
- * @param *J pointer to regularization vector
- * @param kerneltype kerneltype used in GenData::Z
- * @param *kernelparam kernel parameters used in GenData::Z
- *
- */
-struct GenData {
- long K;
- ///< number of classes
- long n;
- ///< number of instances
- long m;
- ///< number of predictors (width of RAW)
- long r;
- ///< number of eigenvalues (width of Z)
- long *y;
- ///< array of class labels, 1..K
- double *Z;
- ///< augmented data matrix (either equal to RAW or to the eigenvectors
- ///< of the kernel matrix)
- double *RAW;
- ///< augmented raw data matrix
- double *Sigma;
- KernelType kerneltype;
- double *kernelparam;
-};
-
-#endif