aboutsummaryrefslogtreecommitdiff
path: root/tests/aux/test_train_kernel.m
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2018-03-27 19:24:03 +0100
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2018-03-27 19:24:03 +0100
commitd83e911fe228571171f9ddc379708dc37c4bfddf (patch)
treefc396f91eaf92010ef0db33e0bb3b084e69402ac /tests/aux/test_train_kernel.m
parentupdate training file for zip dataset (diff)
downloadgensvm-d83e911fe228571171f9ddc379708dc37c4bfddf.tar.gz
gensvm-d83e911fe228571171f9ddc379708dc37c4bfddf.zip
Major bugfix for nonlinear GenSVM
Nonlinear GenSVM depends on the eigendecomposition of the kernel matrix. Mathematically, the Sigma vector in the code should contain the square root of the eigenvalues. Taking the square root was however neglected, which resulted in poor performance of nonlinear GenSVM. This is now fixed, which means that the performance of nonlinear GenSVM will be much better.
Diffstat (limited to 'tests/aux/test_train_kernel.m')
-rw-r--r--tests/aux/test_train_kernel.m30
1 files changed, 15 insertions, 15 deletions
diff --git a/tests/aux/test_train_kernel.m b/tests/aux/test_train_kernel.m
index 7bf14b8..b561bd4 100644
--- a/tests/aux/test_train_kernel.m
+++ b/tests/aux/test_train_kernel.m
@@ -1,21 +1,21 @@
function [V] = test_train_kernel()
-
+
clear;
more off;
rand('state', 654321);
-
+
n = 10;
m = 5;
classes = 4;
cutoff = 5e-3;
-
+
X = rand(n, m);
Z = [ones(n, 1), X];
set_matrix(Z, "data->Z", "data->m+1");
-
+
y = [2 1 3 2 3 2 4 1 3 4];
set_matrix(y, "data->y", "1");
-
+
p = 1.2143;
kappa = 0.90298;
lambda = 0.00219038;
@@ -36,24 +36,24 @@ function [V] = test_train_kernel()
eigenvalues = diag(Sigma);
ratios = eigenvalues ./ eigenvalues(end, end);
-
+
realP = fliplr(P(:, ratios > cutoff));
- realSigma = flipud(eigenvalues(ratios > cutoff));
-
+ realSigma = sqrt(flipud(eigenvalues(ratios > cutoff)));
+
assert_matrix(realSigma, "data->Sigma", "1");
-
+
r = sum(ratios > cutoff);
fprintf("mu_assert(data->r == %i);\n", r);
-
+
M = realP * diag(realSigma);
size(M)
-
+
assert_matrix(Z, "data->RAW", "data->m+1");
-
- seedV = zeros(size(M, 2) + 1, classes - 1);
+
+ seedV = zeros(size(M, 2) + 1, classes - 1);
[W, t] = msvmmaj(M, y, rho, p, kappa, lambda, epsilon, 'show', 0, seedV);
V = [t'; W];
-
+
fprintf('\n');
assert_matrix_abs(V, "model->V", "model->K-1");
@@ -89,4 +89,4 @@ function assert_matrix_abs(A, name, cols)
end
end
fprintf("\n");
-end \ No newline at end of file
+end