aboutsummaryrefslogtreecommitdiff
path: root/tests/aux/test_kernel_pre.m
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2018-03-27 19:24:03 +0100
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2018-03-27 19:24:03 +0100
commitd83e911fe228571171f9ddc379708dc37c4bfddf (patch)
treefc396f91eaf92010ef0db33e0bb3b084e69402ac /tests/aux/test_kernel_pre.m
parentupdate training file for zip dataset (diff)
downloadgensvm-d83e911fe228571171f9ddc379708dc37c4bfddf.tar.gz
gensvm-d83e911fe228571171f9ddc379708dc37c4bfddf.zip
Major bugfix for nonlinear GenSVM
Nonlinear GenSVM depends on the eigendecomposition of the kernel matrix. Mathematically, the Sigma vector in the code should contain the square root of the eigenvalues. Taking the square root was however neglected, which resulted in poor performance of nonlinear GenSVM. This is now fixed, which means that the performance of nonlinear GenSVM will be much better.
Diffstat (limited to 'tests/aux/test_kernel_pre.m')
-rw-r--r--tests/aux/test_kernel_pre.m46
1 files changed, 22 insertions, 24 deletions
diff --git a/tests/aux/test_kernel_pre.m b/tests/aux/test_kernel_pre.m
index a1c8337..69f6f1e 100644
--- a/tests/aux/test_kernel_pre.m
+++ b/tests/aux/test_kernel_pre.m
@@ -1,32 +1,32 @@
function test_kernel_pre()
-
+
kerneltype = 'rbf';
rand('state', 123456);
n = 10;
m = 5;
cutoff = 5e-3;
-
+
X = rand(n, m);
Z = [ones(n, 1), X];
-
+
set_matrix(Z, "data->Z", "data->m+1");
-
+
K = zeros(n, n);
if strcmp(kerneltype, 'poly')
- # Polynomial kernel
- # (gamma * <x_1, x_2> + c)^d
+ % Polynomial kernel
+ % (gamma * <x_1, x_2> + c)^d
gamma = 1.5;
c = 3.0;
d = 1.78;
-
+
for ii=1:n
for jj=1:n
K(ii, jj) = (gamma * (X(ii, :) * X(jj, :)') + c)^d;
end
end
elseif strcmp(kerneltype, 'rbf')
- # RBF kernel
- # exp(-gamma * norm(x1 - x2)^2)
+ % RBF kernel
+ % exp(-gamma * norm(x1 - x2)^2)
gamma = 0.348
for ii=1:n
for jj=1:n
@@ -34,8 +34,8 @@ function test_kernel_pre()
end
end
elseif strcmp(kerneltype, 'sigmoid')
- # Sigmoid kernel
- # tanh(gamma * <x_1, x_2> + c)
+ % Sigmoid kernel
+ % tanh(gamma * <x_1, x_2> + c)
gamma = 1.23;
c = 1.6;
for ii=1:n
@@ -44,29 +44,27 @@ function test_kernel_pre()
end
end
end
-
- K(1, 2)
- [P, Sigma] = eig(K);
+ [P, values] = eig(K);
- eigenvalues = diag(Sigma);
+ eigenvalues = diag(values);
ratios = eigenvalues ./ eigenvalues(end, end);
-
+
realP = fliplr(P(:, ratios > cutoff));
- realSigma = flipud(eigenvalues(ratios > cutoff));
-
+ realSigma = sqrt(flipud(eigenvalues(ratios > cutoff)));
+
assert_matrix(realSigma, "data->Sigma", "1");
-
+
r = sum(ratios > cutoff);
fprintf("mu_assert(data->r == %i);\n", r);
-
+
M = realP * diag(realSigma);
-
+
newZ = [ones(n, 1) M];
assert_matrix_abs(newZ, "data->Z", "data->r+1");
-
+
assert_matrix(Z, "data->RAW", "data->m+1");
-
+
end
function set_matrix(A, name, cols)
@@ -98,4 +96,4 @@ function assert_matrix_abs(A, name, cols)
end
end
fprintf("\n");
-end \ No newline at end of file
+end