aboutsummaryrefslogtreecommitdiff
path: root/src/msvmmaj_train_dataset.c
diff options
context:
space:
mode:
authorGertjan van den Burg <gertjanvandenburg@gmail.com>2014-05-19 17:39:04 -0700
committerGertjan van den Burg <gertjanvandenburg@gmail.com>2014-05-19 17:39:04 -0700
commitff13b0a8552d203b7baeadc8a345a1b6781bc8fe (patch)
tree612580607c9ad6e52287d4bfd0affd0668501fdb /src/msvmmaj_train_dataset.c
parentadd functionality for counting SVs (diff)
downloadgensvm-ff13b0a8552d203b7baeadc8a345a1b6781bc8fe.tar.gz
gensvm-ff13b0a8552d203b7baeadc8a345a1b6781bc8fe.zip
realloc existing model instead of using fold model, saving memory and time!
Diffstat (limited to 'src/msvmmaj_train_dataset.c')
-rw-r--r--src/msvmmaj_train_dataset.c132
1 files changed, 68 insertions, 64 deletions
diff --git a/src/msvmmaj_train_dataset.c b/src/msvmmaj_train_dataset.c
index e81604e..0221a89 100644
--- a/src/msvmmaj_train_dataset.c
+++ b/src/msvmmaj_train_dataset.c
@@ -338,8 +338,8 @@ void consistency_repeats(struct Queue *q, long repeats, TrainType traintype)
for (r=0; r<repeats; r++) {
if (traintype == CV) {
loop_s = clock();
- p = cross_validation(model, NULL,
- task->train_data, task->folds);
+ p = cross_validation(model, task->train_data,
+ task->folds);
loop_e = clock();
time[i] += elapsed_time(loop_s, loop_e);
matrix_set(perf, repeats, i, r, p);
@@ -349,6 +349,9 @@ void consistency_repeats(struct Queue *q, long repeats, TrainType traintype)
exit(1);
}
note("%3.3f\t", p);
+ // this is done because if we reuse the V it's not a
+ // consistency check
+ msvmmaj_seed_model_V(NULL, model);
}
for (r=0; r<repeats; r++) {
std[i] += pow(matrix_get(
@@ -426,85 +429,56 @@ void consistency_repeats(struct Queue *q, long repeats, TrainType traintype)
* @returns performance (hitrate) of the configuration on
* cross validation
*/
-double cross_validation(struct MajModel *model, struct MajModel *seed_model,
- struct MajData *data, long folds)
+double cross_validation(struct MajModel *model, struct MajData *data,
+ long folds)
{
FILE *fid;
- bool fs = false;
long f, *predy;
- double total_perf = 0;
- struct MajModel *fold_model;
+ double performance, total_perf = 0;
struct MajData *train_data, *test_data;
- long *cv_idx = Calloc(long, model->n);
- double *performance = Calloc(double, folds);
-
- if (seed_model == NULL) {
- seed_model = msvmmaj_init_model();
- seed_model->n = 0; // we never use anything other than V
- seed_model->m = model->m;
- seed_model->K = model->K;
- msvmmaj_allocate_model(seed_model);
- msvmmaj_seed_model_V(NULL, seed_model);
- fs = true;
- }
+ long *cv_idx = Calloc(long, data->n);
train_data = msvmmaj_init_data();
test_data = msvmmaj_init_data();
- // create splits
- msvmmaj_make_cv_split(model->n, folds, cv_idx);
+
+ // create splits
+ msvmmaj_make_cv_split(data->n, folds, cv_idx);
for (f=0; f<folds; f++) {
msvmmaj_get_tt_split(data, train_data, test_data, cv_idx, f);
- // initialize a model for this fold and copy the model
- // parameters
- fold_model = msvmmaj_init_model();
- copy_model(model, fold_model);
-
- fold_model->n = train_data->n;
- fold_model->m = train_data->m;
- fold_model->K = train_data->K;
-
- // allocate, initialize and seed the fold model
- msvmmaj_allocate_model(fold_model);
- msvmmaj_initialize_weights(train_data, fold_model);
- msvmmaj_seed_model_V(seed_model, fold_model);
- // train the model (without output)
+ // reallocate the model if necessary for the new train split
+ msvmmaj_reallocate_model(model, train_data->n);
+
+ msvmmaj_initialize_weights(train_data, model);
+
+ // train the model (without output)
fid = MSVMMAJ_OUTPUT_FILE;
MSVMMAJ_OUTPUT_FILE = NULL;
- msvmmaj_optimize(fold_model, train_data);
+ msvmmaj_optimize(model, train_data);
MSVMMAJ_OUTPUT_FILE = fid;
- // calculate predictive performance on test set
+ // calculate prediction performance on test set
predy = Calloc(long, test_data->n);
- msvmmaj_predict_labels(test_data, fold_model, predy);
- performance[f] = msvmmaj_prediction_perf(test_data, predy);
- total_perf += performance[f]/((double) folds);
+ msvmmaj_predict_labels(test_data, model, predy);
+ performance = msvmmaj_prediction_perf(test_data, predy);
+ total_perf += performance * test_data->n;
- // seed the seed model with the fold model
- msvmmaj_seed_model_V(fold_model, seed_model);
-
free(predy);
free(train_data->y);
free(train_data->Z);
free(test_data->y);
free(test_data->Z);
-
- msvmmaj_free_model(fold_model);
}
- // if a seed model was allocated before, free it.
- if (fs)
- msvmmaj_free_model(seed_model);
free(train_data);
free(test_data);
- free(performance);
- free(cv_idx);
- return total_perf;
+ total_perf /= ((double) data->n);
+ return total_perf;
}
/**
@@ -527,21 +501,15 @@ void start_training_cv(struct Queue *q)
{
double perf, current_max = 0;
struct Task *task = get_next_task(q);
- struct MajModel *seed_model = msvmmaj_init_model();
struct MajModel *model = msvmmaj_init_model();
clock_t main_s, main_e, loop_s, loop_e;
- model->n = task->train_data->n;
+ model->n = 0;
model->m = task->train_data->m;
model->K = task->train_data->K;
msvmmaj_allocate_model(model);
+ msvmmaj_seed_model_V(NULL, model);
- seed_model->n = 0;
- seed_model->m = task->train_data->m;
- seed_model->K = task->train_data->K;
- msvmmaj_allocate_model(seed_model);
- msvmmaj_seed_model_V(NULL, seed_model);
-
main_s = clock();
while (task) {
note("(%03li/%03li)\tw = %li\te = %f\tp = %f\tk = %f\t "
@@ -550,10 +518,9 @@ void start_training_cv(struct Queue *q)
task->epsilon,
task->p, task->kappa, task->lambda);
make_model_from_task(task, model);
-
+
loop_s = clock();
- perf = cross_validation(model, seed_model, task->train_data,
- task->folds);
+ perf = cross_validation(model, task->train_data, task->folds);
loop_e = clock();
current_max = maximum(current_max, perf);
@@ -565,15 +532,52 @@ void start_training_cv(struct Queue *q)
task = get_next_task(q);
}
main_e = clock();
-
+
note("\nTotal elapsed time: %8.8f seconds\n",
elapsed_time(main_s, main_e));
free(task);
- msvmmaj_free_model(seed_model);
msvmmaj_free_model(model);
}
+void msvmmaj_reallocate_model(struct MajModel *model, long n)
+{
+ long K = model->K;
+
+ model->UU = (double *) realloc(model->UU, n*K*(K-1)*sizeof(double));
+ if (model->UU == NULL) {
+ fprintf(stderr, "Failed to reallocate UU\n");
+ exit(1);
+ }
+
+ model->Q = (double *) realloc(model->Q, n*K*sizeof(double));
+ if (model->Q == NULL) {
+ fprintf(stderr, "Failed to reallocate Q\n");
+ exit(1);
+ }
+
+ model->H = (double *) realloc(model->H, n*K*sizeof(double));
+ if (model->H == NULL) {
+ fprintf(stderr, "Failed to reallocate H\n");
+ exit(1);
+ }
+
+ model->R = (double *) realloc(model->R, n*K*sizeof(double));
+ if (model->R == NULL) {
+ fprintf(stderr, "Failed to reallocate R\n");
+ exit(1);
+ }
+
+ model->rho = (double *) realloc(model->rho, n*sizeof(double));
+ if (model->rho == NULL) {
+ fprintf(stderr, "Failed to reallocte rho\n");
+ exit(1);
+ }
+
+ model->n = n;
+}
+
+
/**
* @brief Run the grid search for a train/test dataset
*