aboutsummaryrefslogtreecommitdiff
path: root/src/msvmmaj_train_dataset.c
diff options
context:
space:
mode:
authorGertjan van den Burg <burg@ese.eur.nl>2014-07-02 17:09:38 +0200
committerGertjan van den Burg <burg@ese.eur.nl>2014-07-02 17:09:38 +0200
commit75a91a963c979b0d657b8839036cd82f6ae5f24b (patch)
tree1fd14e14d6cf0e877c07ecc95258e3968460cc0a /src/msvmmaj_train_dataset.c
parentset element of category matrix to zero explicitly, not calloced (diff)
downloadgensvm-75a91a963c979b0d657b8839036cd82f6ae5f24b.tar.gz
gensvm-75a91a963c979b0d657b8839036cd82f6ae5f24b.zip
seed V based on scale of X
Diffstat (limited to 'src/msvmmaj_train_dataset.c')
-rw-r--r--src/msvmmaj_train_dataset.c12
1 files changed, 6 insertions, 6 deletions
diff --git a/src/msvmmaj_train_dataset.c b/src/msvmmaj_train_dataset.c
index 8d23684..7fa7316 100644
--- a/src/msvmmaj_train_dataset.c
+++ b/src/msvmmaj_train_dataset.c
@@ -335,7 +335,7 @@ void consistency_repeats(struct Queue *q, long repeats, TrainType traintype)
model->m = task->train_data->m;
model->K = task->train_data->K;
msvmmaj_allocate_model(model);
- msvmmaj_seed_model_V(NULL, model);
+ msvmmaj_seed_model_V(NULL, model, task->train_data);
}
time[i] = 0.0;
@@ -356,7 +356,7 @@ void consistency_repeats(struct Queue *q, long repeats, TrainType traintype)
note("%3.3f\t", p);
// this is done because if we reuse the V it's not a
// consistency check
- msvmmaj_seed_model_V(NULL, model);
+ msvmmaj_seed_model_V(NULL, model, task->train_data);
}
for (r=0; r<repeats; r++) {
std[i] += pow(matrix_get(
@@ -512,7 +512,7 @@ void start_training_cv(struct Queue *q)
model->m = task->train_data->m;
model->K = task->train_data->K;
msvmmaj_allocate_model(model);
- msvmmaj_seed_model_V(NULL, model);
+ msvmmaj_seed_model_V(NULL, model, task->train_data);
main_s = clock();
while (task) {
@@ -576,7 +576,7 @@ void start_training_tt(struct Queue *q)
seed_model->m = task->train_data->m;
seed_model->K = task->train_data->K;
msvmmaj_allocate_model(seed_model);
- msvmmaj_seed_model_V(NULL, seed_model);
+ msvmmaj_seed_model_V(NULL, seed_model, task->train_data);
main_s = clock();
while (task) {
@@ -594,7 +594,7 @@ void start_training_tt(struct Queue *q)
msvmmaj_allocate_model(model);
msvmmaj_initialize_weights(task->train_data, model);
- msvmmaj_seed_model_V(seed_model, model);
+ msvmmaj_seed_model_V(seed_model, model, task->train_data);
fid = MSVMMAJ_OUTPUT_FILE;
MSVMMAJ_OUTPUT_FILE = NULL;
@@ -607,7 +607,7 @@ void start_training_tt(struct Queue *q)
if (task->test_data->y != NULL)
total_perf = msvmmaj_prediction_perf(task->test_data,
predy);
- msvmmaj_seed_model_V(model, seed_model);
+ msvmmaj_seed_model_V(model, seed_model, task->train_data);
msvmmaj_free_model(model);
free(predy);