aboutsummaryrefslogtreecommitdiff
path: root/src/msvmmaj_train_dataset.c
diff options
context:
space:
mode:
authorGertjan van den Burg <burg@ese.eur.nl>2014-06-26 17:53:51 +0200
committerGertjan van den Burg <burg@ese.eur.nl>2014-06-26 17:53:51 +0200
commit244b5d30b3f794a030be5d943fa9f672e50c38ad (patch)
tree52e645cb278df0a35d140d0e530012037df32a23 /src/msvmmaj_train_dataset.c
parentremove comments from prediction function (diff)
downloadgensvm-244b5d30b3f794a030be5d943fa9f672e50c38ad.tar.gz
gensvm-244b5d30b3f794a030be5d943fa9f672e50c38ad.zip
remove fixed random seed from grid search
Diffstat (limited to 'src/msvmmaj_train_dataset.c')
-rw-r--r--src/msvmmaj_train_dataset.c4
1 files changed, 0 insertions, 4 deletions
diff --git a/src/msvmmaj_train_dataset.c b/src/msvmmaj_train_dataset.c
index 29b410b..7db1379 100644
--- a/src/msvmmaj_train_dataset.c
+++ b/src/msvmmaj_train_dataset.c
@@ -425,10 +425,6 @@ void consistency_repeats(struct Queue *q, long repeats, TrainType traintype)
* seed_model parameter. If seed_model is NULL, random starting values are
* used.
*
- * @todo
- * There must be some inefficiencies here because the fold model is allocated
- * at every fold. This would be detrimental with large datasets.
- *
* @param[in] model MajModel with the configuration to train
* @param[in] seed_model MajModel with a seed for MajModel::V
* @param[in] data MajData with the dataset