aboutsummaryrefslogtreecommitdiff
path: root/src/msvmmaj_train.c
diff options
context:
space:
mode:
authorGertjan van den Burg <burg@ese.eur.nl>2013-10-18 15:48:59 +0200
committerGertjan van den Burg <burg@ese.eur.nl>2013-10-18 15:48:59 +0200
commit6d064658f8ae7ca0f42fef6dcc7f896144e9637b (patch)
treea41e8793f71f637b68f862220ae5566f4537073d /src/msvmmaj_train.c
parentallow seeding of V and added documentation (diff)
downloadgensvm-6d064658f8ae7ca0f42fef6dcc7f896144e9637b.tar.gz
gensvm-6d064658f8ae7ca0f42fef6dcc7f896144e9637b.zip
restart using git
Diffstat (limited to 'src/msvmmaj_train.c')
-rw-r--r--src/msvmmaj_train.c410
1 files changed, 410 insertions, 0 deletions
diff --git a/src/msvmmaj_train.c b/src/msvmmaj_train.c
new file mode 100644
index 0000000..272d86a
--- /dev/null
+++ b/src/msvmmaj_train.c
@@ -0,0 +1,410 @@
+/**
+ * @file msvmmaj_train.c
+ * @author Gertjan van den Burg (burg@ese.eur.nl)
+ * @date August 9, 2013
+ * @brief Main functions for training the MSVMMaj solution.
+ *
+ * @details
+ * Contains update and loss functions used to actually find
+ * the optimal V.
+ *
+ */
+
+#include <math.h>
+#include <cblas.h>
+
+#include "msvmmaj_train.h"
+#include "MSVMMaj.h"
+#include "libMSVMMaj.h"
+#include "mylapack.h"
+#include "matrix.h"
+#include "util.h"
+
+#define MAX_ITER 1000000
+
+/**
+ * @name msvmmaj_optimize
+ * @brief The main training loop for MSVMMaj
+ *
+ * The msvmmaj_optimize() function is the main training function. This function
+ * handles the optimization of the model with the given model parameters, with
+ * the data given. On return the matrix model->V contains the optimal weight matrix.
+ *
+ * @param [in,out] model the model to be trained. Contains optimal V on exit.
+ * @param [in] data the data to train the model with.
+ */
+void msvmmaj_optimize(struct MajModel *model, struct MajData *data)
+{
+ long i, j, it = 0;
+ double L, Lbar;
+
+ long n = model->n;
+ long m = model->m;
+ long K = model->K;
+
+ double *B = Calloc(double, n*(K-1));
+ double *ZV = Calloc(double, n*(K-1));
+ double *ZAZ = Calloc(double, (m+1)*(m+1));
+ double *ZAZV = Calloc(double, (m+1)*(K-1));
+ double *ZAZVT = Calloc(double, (m+1)*(K-1));
+
+ note("Starting main loop.\n");
+ note("MajDataset:\n");
+ note("\tn = %i\n", n);
+ note("\tm = %i\n", m);
+ note("\tK = %i\n", K);
+ note("Parameters:\n");
+ note("\tkappa = %f\n", model->kappa);
+ note("\tp = %f\n", model->p);
+ note("\tlambda = %15.16f\n", model->lambda);
+ note("\tepsilon = %g\n", model->epsilon);
+ note("\n");
+
+ msvmmaj_simplex_gen(model->K, model->U);
+ msvmmaj_simplex_diff(model, data);
+ msvmmaj_category_matrix(model, data);
+
+ L = msvmmaj_get_loss(model, data, ZV);
+ Lbar = L + 2.0*model->epsilon*L;
+
+ while ((it < MAX_ITER) && (Lbar - L)/L > model->epsilon)
+ {
+ // ensure V contains newest V and Vbar contains V from previous
+ msvmmaj_get_update(model, data, B, ZAZ, ZAZV, ZAZVT);
+ if (it > 50)
+ msvmmaj_step_doubling(model);
+
+ Lbar = L;
+ L = msvmmaj_get_loss(model, data, ZV);
+
+ if (it%50 == 0)
+ note("iter = %li, L = %15.16f, Lbar = %15.16f, reldiff = %15.16f\n",
+ it, L, Lbar, (Lbar - L)/L);
+ it++;
+ }
+
+ note("optimization finished, iter = %li, error = %8.8f\n", it-1,
+ (Lbar - L)/L);
+ model->training_error = (Lbar - L)/L;
+
+ for (i=0; i<K-1; i++)
+ model->t[i] = matrix_get(model->V, K-1, 0, i);
+ for (i=1; i<m+1; i++)
+ for (j=0; j<K-1; j++)
+ matrix_set(model->W, K-1, i-1, j, matrix_get(model->V, K-1, i, j));
+ free(B);
+ free(ZV);
+ free(ZAZ);
+ free(ZAZV);
+ free(ZAZVT);
+}
+
+/**
+ * @name msvmmaj_get_loss
+ * @brief calculate the current value of the loss function
+ *
+ * The current loss value is calculated based on the matrix V in the given
+ * model.
+ *
+ * @param [in] model model structure which holds the current estimate V
+ * @param [in] data data structure
+ * @param [in,out] ZV pre-allocated matrix ZV which is updated on output
+ *
+ * @return the current value of the loss function
+ */
+double msvmmaj_get_loss(struct MajModel *model, struct MajData *data, double *ZV)
+{
+ long i, j;
+ long n = data->n;
+ long K = data->K;
+ long m = data->m;
+
+ double value, rowvalue, loss = 0.0;
+
+ msvmmaj_calculate_errors(model, data, ZV);
+ msvmmaj_calculate_huber(model);
+
+ for (i=0; i<n; i++) {
+ rowvalue = 0;
+ value = 0;
+ for (j=0; j<K; j++) {
+ value = matrix_get(model->H, K, i, j);
+ value = pow(value, model->p);
+ value *= matrix_get(model->R, K, i, j);
+ rowvalue += value;
+ }
+ rowvalue = pow(rowvalue, 1.0/(model->p));
+ rowvalue *= model->rho[i];
+ loss += rowvalue;
+ }
+ loss /= ((double) n);
+
+ value = 0;
+ for (i=1; i<m+1; i++) {
+ for (j=0; j<K-1; j++) {
+ value += pow(matrix_get(model->V, K-1, i, j), 2.0);
+ }
+ }
+ loss += model->lambda * value;
+
+ return loss;
+}
+
+/**
+ * @name msvmmaj_get_update
+ * @brief perform a single step of the majorization algorithm to update V
+ *
+ * details
+ *
+ * @param [in,out] model model to be updated
+ * @param [in] data data used in model
+ * @param [in] B pre-allocated matrix used for linear coefficients
+ * @param [in] ZAZ pre-allocated matrix used in system
+ * @param [in] ZAZV pre-allocated matrix used in system solving
+ * @param [in] ZAZVT pre-allocated matrix used in system solving
+ */
+void msvmmaj_get_update(struct MajModel *model, struct MajData *data, double *B,
+ double *ZAZ, double *ZAZV, double *ZAZVT)
+{
+ // Because msvmmaj_update is always called after a call to
+ // msvmmaj_get_loss() with the latest V, it is unnecessary to recalculate
+ // the matrix ZV, the errors Q, or the Huber errors H. Awesome!
+ int status, class;
+ long i, j, k;
+ double Avalue, Bvalue;
+ double omega, value, a, b, q, h, r;
+
+ long n = model->n;
+ long m = model->m;
+ long K = model->K;
+
+ double kappa = model->kappa;
+ double p = model->p;
+ double *rho = model->rho;
+
+ const double a2g2 = 0.25*p*(2.0*p - 1.0)*pow((kappa+1.0)/2.0,p-2.0);
+ const double in = 1.0/((double) n);
+
+ Memset(B, double, n*(K-1));
+ Memset(ZAZ, double, (m+1)*(m+1));
+ b = 0;
+ for (i=0; i<n; i++) {
+ value = 0;
+ omega = 0;
+ for (j=0; j<K; j++) {
+ h = matrix_get(model->H, K, i, j);
+ r = matrix_get(model->R, K, i, j);
+ value += (h*r > 0) ? 1 : 0;
+ omega += pow(h, p)*r;
+ }
+ class = (value <= 1.0) ? 1 : 0;
+ omega = (1.0/p)*pow(omega, 1.0/p - 1.0);
+
+ Avalue = 0;
+ if (class == 1) {
+ for (j=0; j<K; j++) {
+ q = matrix_get(model->Q, K, i, j);
+ if (q <= -kappa) {
+ a = 0.25/(0.5 - kappa/2.0 - q);
+ b = 0.5;
+ } else if (q <= 1.0) {
+ a = 1.0/(2.0*kappa + 2.0);
+ b = (1.0 - q)*a;
+ } else {
+ a = -0.25/(0.5 - kappa/2.0 - q);
+ b = 0;
+ }
+ for (k=0; k<K-1; k++) {
+ Bvalue = in*rho[i]*b*matrix3_get(model->UU, K-1, K, i, k, j);
+ matrix_add(B, K-1, i, k, Bvalue);
+ }
+ Avalue += a*matrix_get(model->R, K, i, j);
+ }
+ } else {
+ if (2.0 - p < 0.0001) {
+ for (j=0; j<K; j++) {
+ q = matrix_get(model->Q, K, i, j);
+ if (q <= -kappa) {
+ b = 0.5 - kappa/2.0 - q;
+ } else if ( q <= 1.0) {
+ b = pow(1.0 - q, 3.0)/(2.0*pow(kappa + 1.0, 2.0));
+ } else {
+ b = 0;
+ }
+ for (k=0; k<K-1; k++) {
+ Bvalue = in*rho[i]*omega*b*matrix3_get(model->UU, K-1, K, i, k, j);
+ matrix_add(B, K-1, i, k, Bvalue);
+ }
+ }
+ Avalue = 1.5*(K - 1.0);
+ } else {
+ for (j=0; j<K; j++) {
+ q = matrix_get(model->Q, K, i, j);
+ if (q <= (p + kappa - 1.0)/(p - 2.0)) {
+ a = 0.25*pow(p, 2.0)*pow(0.5 - kappa/2.0 - q, p - 2.0);
+ } else if (q <= 1.0) {
+ a = a2g2;
+ } else {
+ a = 0.25*pow(p, 2.0)*pow((p/(p - 2.0))*(0.5 - kappa/2.0 - q), p - 2.0);
+ b = a*(2.0*q + kappa - 1.0)/(p - 2.0) + 0.5*p*pow((p/(p - 2.0))*(0.5 - kappa/2.0 - q), p - 1.0);
+ }
+ if (q <= -kappa) {
+ b = 0.5*p*pow(0.5 - kappa/2.0 - q, p - 1.0);
+ } else if ( q <= 1.0) {
+ b = p*pow(1.0 - q, 2.0*p - 1.0)/pow(2*kappa+2.0, p);
+ }
+ for (k=0; k<K-1; k++) {
+ Bvalue = in*rho[i]*omega*b*matrix3_get(model->UU, K-1, K, i, k, j);
+ matrix_add(B, K-1, i, k, Bvalue);
+ }
+ Avalue += a*matrix_get(model->R, K, i, j);
+ }
+ }
+ Avalue *= omega;
+ }
+ Avalue *= in * rho[i];
+
+ // Now we calculate the matrix ZAZ. Since this is
+ // guaranteed to be symmetric, we only calculate the
+ // upper part of the matrix, and then copy this over
+ // to the lower part after all calculations are done.
+ // Note that the use of dsym is faster than dspr, even
+ // though dspr uses less memory.
+ cblas_dsyr(
+ CblasRowMajor,
+ CblasUpper,
+ m+1,
+ Avalue,
+ &data->Z[i*(m+1)],
+ 1,
+ ZAZ,
+ m+1);
+ }
+ // Copy upper to lower (necessary because we need to switch
+ // to Col-Major order for LAPACK).
+ /*
+ for (i=0; i<m+1; i++)
+ for (j=0; j<m+1; j++)
+ matrix_set(ZAZ, m+1, j, i, matrix_get(ZAZ, m+1, i, j));
+ */
+
+ // Calculate the right hand side of the system we
+ // want to solve.
+ cblas_dsymm(
+ CblasRowMajor,
+ CblasLeft,
+ CblasUpper,
+ m+1,
+ K-1,
+ 1.0,
+ ZAZ,
+ m+1,
+ model->V,
+ K-1,
+ 0.0,
+ ZAZV,
+ K-1);
+ cblas_dgemm(
+ CblasRowMajor,
+ CblasTrans,
+ CblasNoTrans,
+ m+1,
+ K-1,
+ n,
+ 1.0,
+ data->Z,
+ m+1,
+ B,
+ K-1,
+ 1.0,
+ ZAZV,
+ K-1);
+ /*
+ * Add lambda to all diagonal elements except the
+ * first one.
+ */
+ i = 0;
+ for (j=0; j<m; j++)
+ ZAZ[i+=m+1 + 1] += model->lambda;
+
+ // For the LAPACK call we need to switch to Column-
+ // Major order. This is unnecessary for the matrix
+ // ZAZ because it is symmetric. The matrix ZAZV
+ // must be converted however.
+ for (i=0; i<m+1; i++)
+ for (j=0; j<K-1; j++)
+ ZAZVT[j*(m+1)+i] = ZAZV[i*(K-1)+j];
+
+ // We use the lower ('L') part of the matrix ZAZ,
+ // because we have used the upper part in the BLAS
+ // calls above in Row-major order, and Lapack uses
+ // column major order.
+ status = dposv(
+ 'L',
+ m+1,
+ K-1,
+ ZAZ,
+ m+1,
+ ZAZVT,
+ m+1);
+
+ if (status != 0) {
+ // This step should not be necessary, as the matrix
+ // ZAZ is positive semi-definite by definition. It
+ // is included for safety.
+ fprintf(stderr, "Received nonzero status from dposv: %i\n", status);
+ int *IPIV = malloc((m+1)*sizeof(int));
+ double *WORK = malloc(1*sizeof(double));
+ status = dsysv(
+ 'L',
+ m+1,
+ K-1,
+ ZAZ,
+ m+1,
+ IPIV,
+ ZAZVT,
+ m+1,
+ WORK,
+ -1);
+ WORK = (double *)realloc(WORK, WORK[0]*sizeof(double));
+ status = dsysv(
+ 'L',
+ m+1,
+ K-1,
+ ZAZ,
+ m+1,
+ IPIV,
+ ZAZVT,
+ m+1,
+ WORK,
+ sizeof(WORK)/sizeof(double));
+ if (status != 0)
+ fprintf(stderr, "Received nonzero status from dsysv: %i\n", status);
+ }
+
+ // Return to Row-major order. The matrix ZAZVT contains the
+ // solution after the dposv/dsysv call.
+ for (i=0; i<m+1; i++)
+ for (j=0; j<K-1; j++)
+ ZAZV[i*(K-1)+j] = ZAZVT[j*(m+1)+i];
+
+ // Store the previous V in Vbar, assign the new V
+ // (which is stored in ZAZVT) to the model, and give ZAZVT the
+ // address of Vbar. This should ensure that we keep
+ // re-using assigned memory instead of reallocating at every
+ // update.
+ /* See this answer: http://stackoverflow.com/q/13246615/
+ * For now we'll just do it by value until the rest is figured out.
+ ptr = model->Vbar;
+ model->Vbar = model->V;
+ model->V = ZAZVT;
+ ZAZVT = ptr;
+ */
+
+ for (i=0; i<m+1; i++) {
+ for (j=0; j<K-1; j++) {
+ matrix_set(model->Vbar, K-1, i, j, matrix_get(model->V, K-1, i, j));
+ matrix_set(model->V, K-1, i, j, matrix_get(ZAZV, K-1, i, j));
+ }
+ }
+}