diff options
| author | Gertjan van den Burg <burg@ese.eur.nl> | 2013-08-05 17:21:36 +0200 |
|---|---|---|
| committer | Gertjan van den Burg <burg@ese.eur.nl> | 2013-08-05 17:21:36 +0200 |
| commit | 203ee5997bf80d4386b7b9fcd17365763c36e0ad (patch) | |
| tree | edc19cae4563f5265460569a8796d6ba8c3533cb /src/libMSVMMaj.c | |
| download | gensvm-203ee5997bf80d4386b7b9fcd17365763c36e0ad.tar.gz gensvm-203ee5997bf80d4386b7b9fcd17365763c36e0ad.zip | |
initial commit
Diffstat (limited to 'src/libMSVMMaj.c')
| -rw-r--r-- | src/libMSVMMaj.c | 651 |
1 files changed, 651 insertions, 0 deletions
diff --git a/src/libMSVMMaj.c b/src/libMSVMMaj.c new file mode 100644 index 0000000..3dc5e46 --- /dev/null +++ b/src/libMSVMMaj.c @@ -0,0 +1,651 @@ +#include "libMSVMMaj.h" + +/* + Generate the simplex matrix. A pointer to the matrix + must be given, and the matrix must have been + allocated. +*/ +void simplex_gen(long K, double *U) +{ + long i, j; + for (i=0; i<K; i++) { + for (j=0; j<K-1; j++) { + if (i <= j) { + matrix_set(U, K-1, i, j, -1.0/sqrt(2.0*(j+1)*(j+2))); + } else if (i == j+1) { + matrix_set(U, K-1, i, j, sqrt((j+1)/(2.0*(j+2)))); + } else { + matrix_set(U, K-1, i, j, 0.0); + } + } + } +} + +/* + Generate the category matrix R. The category matrix has 1's everywhere + except at the column corresponding to the label of instance i. +*/ +void category_matrix(struct Model *model, struct Data *dataset) +{ + long i, j; + long n = model->n; + long K = model->K; + + for (i=0; i<n; i++) { + for (j=0; j<K; j++) { + if (dataset->y[i] != j+1) { + matrix_set(model->R, K, i, j, 1.0); + } + } + } +} + +void simplex_diff(struct Model *model, struct Data *data) +{ + long i, j, k; + double value; + + long n = model->n; + long K = model->K; + + for (i=0; i<n; i++) { + for (j=0; j<K-1; j++) { + for (k=0; k<K; k++) { + value = matrix_get(model->U, K-1, data->y[i]-1, j); + value -= matrix_get(model->U, K-1, k, j); + matrix3_set(model->UU, K-1, K, i, j, k, value); + } + } + } +} + +/* + Calculate the errors Q based on the current value of V. + It is assumed that the memory for Q has already been allocated. + In addition, the matrix ZV is calculated here. It is assigned to a + pre-allocated block of memory, since it would be inefficient to keep + reassigning this block at every iteration. +*/ +void calculate_errors(struct Model *model, struct Data *data, double *ZV) +{ + long i, j, k; + double a, value; + + long n = model->n; + long m = model->m; + long K = model->K; + + //info("\t\tCalculating ZV ... "); + cblas_dgemm( + CblasRowMajor, + CblasNoTrans, + CblasNoTrans, + n, + K-1, + m+1, + 1.0, + data->Z, + m+1, + model->V, + K-1, + 0.0, + ZV, + K-1); + //info("done\n"); + Memset(model->Q, double, n*K); + + //info("\t\tCalculating qs ... "); + for (i=0; i<n; i++) { + for (j=0; j<K-1; j++) { + a = matrix_get(ZV, K-1, i, j); + for (k=0; k<K; k++) { + value = a * matrix3_get(model->UU, K-1, K, i, j, k); + matrix_add(model->Q, K, i, k, value); + } + } + } + //info("done\n"); +} + +/* + Calculate the Huber hinge errors for each error in the matrix Q. +*/ +void calculate_huber(struct Model *model) +{ + long i, j; + double q, value; + + for (i=0; i<model->n; i++) { + for (j=0; j<model->K; j++) { + q = matrix_get(model->Q, model->K, i, j); + value = 0.0; + if (q <= -model->kappa) { + value = 1.0 - q - (model->kappa+1.0)/2.0; + } else if (q <= 1.0) { + value = 1.0/(2.0*model->kappa+2.0)*pow(1.0 - q, 2.0); + } + matrix_set(model->H, model->K, i, j, value); + } + } +} + +/* + Calculate the value of the loss function based on the current estimate + of V. +*/ +double get_msvmmaj_loss(struct Model *model, struct Data *data, double *ZV) +{ + long i, j; + long n = data->n; + long K = data->K; + long m = data->m; + + double value, rowvalue, loss = 0.0; + + //info("\tCalculating errors\n"); + calculate_errors(model, data, ZV); + //info("\tCalculating Hubers\n"); + calculate_huber(model); + + for (i=0; i<n; i++) { + rowvalue = 0; + value = 0; + for (j=0; j<K; j++) { + value = matrix_get(model->H, K, i, j); + value = pow(value, model->p); + value *= matrix_get(model->R, K, i, j); + } + rowvalue += value; + rowvalue = pow(rowvalue, 1.0/(model->p)); + rowvalue *= model->rho[i]; + loss += rowvalue; + } + loss /= ((double) n); + + value = 0; + for (i=1; i<m+1; i++) { + for (j=0; j<K-1; j++) { + value += pow(matrix_get(model->V, K-1, i, j), 2.0); + } + } + loss += model->lambda * value; + + return loss; +} + + +/* + Training loop is defined here. +*/ +void main_loop(struct Model *model, struct Data *data) +{ + long i, j, it = 0; + double L, Lbar; + + long n = model->n; + long m = model->m; + long K = model->K; + + srand(time(NULL)); + + int *ClassIdx = Malloc(int, n); + double *A = Malloc(double, n); + double *B = Malloc(double, n*(K-1)); + double *ZV = Malloc(double, n*(K-1)); + double *ZAZ = Malloc(double, (m+1)*(m+1)); + double *ZAZV = Malloc(double, (m+1)*(K-1)); + double *ZAZVT = Malloc(double, (m+1)*(K-1)); + double *Omega = Malloc(double, n); + + Memset(ClassIdx, int, n); + Memset(A, double, n); + Memset(B, double, n*(K-1)); + Memset(ZV, double, n*(K-1)); + Memset(ZAZ, double, (m+1)*(m+1)); + Memset(ZAZV, double, (m+1)*(K-1)); + Memset(ZAZVT, double, (m+1)*(K-1)); + Memset(Omega, double, n); + + info("Starting main loop.\n"); + info("Dataset:\n"); + info("\tn = %i\n", n); + info("\tm = %i\n", m); + info("\tK = %i\n", K); + info("Parameters:\n"); + info("\tkappa = %f\n", model->kappa); + info("\tp = %f\n", model->p); + info("\tlambda = %15.16f\n", model->lambda); + info("\n"); + + info("Z:\n"); + print_matrix(data->Z, n, m+1); + + //info("Generating simplex\n"); + simplex_gen(model->K, model->U); + //info("Generating simplex diff\n"); + simplex_diff(model, data); + //info("Generating category matrix\n"); + category_matrix(model, data); + + // Initialize V + //info("Initializing V\n"); + for (i=0; i<m+1; i++) + for (j=0; j<K-1; j++) + //matrix_set(model->V, K-1, i, j, -1.0+2.0*rnd()); + matrix_set(model->V, K-1, i, j, 1.0); + + //info("Getting initial loss\n"); + L = get_msvmmaj_loss(model, data, ZV); + Lbar = L + 2.0*model->epsilon*L; + + while ((it < MAX_ITER) && (Lbar - L)/L > model->epsilon) + { + info("################## Before %i ################\n", it); + info("V:\n"); + print_matrix(model->V, m+1, K-1); + info("Vbar:\n"); + print_matrix(model->Vbar, m+1, K-1); + info("Q:\n"); + print_matrix(model->Q, n, K); + info("H:\n"); + print_matrix(model->H, n, K); + info("ZV:\n"); + print_matrix(ZV, n, K-1); + info("ClassIdx:\n"); + for (i=0; i<n; i++) + info("%i\n", ClassIdx[i]); + info("\n"); + info("A:\n"); + print_matrix(A, n, 1); + info("B:\n"); + print_matrix(B, n, K-1); + + // ensure V contains newest V and Vbar contains V from previous + //info("Calculating update\n"); + msvmmaj_update(model, data, ClassIdx, A, B, Omega, ZAZ, + ZAZV, ZAZVT); + + info("################## After %i ################\n", it); + info("V:\n"); + print_matrix(model->V, m+1, K-1); + info("Vbar:\n"); + print_matrix(model->Vbar, m+1, K-1); + info("Q:\n"); + print_matrix(model->Q, n, K); + info("H:\n"); + print_matrix(model->H, n, K); + info("ZV:\n"); + print_matrix(ZV, n, K-1); + info("ClassIdx:\n"); + for (i=0; i<n; i++) + info("%i\n", ClassIdx[i]); + info("\n"); + info("A:\n"); + print_matrix(A, n, 1); + info("B:\n"); + print_matrix(B, n, K-1); + + if (it > 50) + step_doubling(model); + + Lbar = L; + L = get_msvmmaj_loss(model, data, ZV); + + if (it%1 == 0) + info("iter = %li, L = %15.16f, Lbar = %15.16f, reldiff = %15.16f\n", + it, L, Lbar, (Lbar - L)/L); + it++; + } + + info("optimization finished, iter = %li\n", it-1); + + for (i=0; i<K-1; i++) + model->t[i] = matrix_get(model->V, K-1, 0, i); + for (i=1; i<m+1; i++) + for (j=0; j<K-1; j++) + matrix_set(model->W, K-1, i-1, j, matrix_get(model->V, K-1, i, j)); + + info("I'm going to free some stuff ... "); + info("0"); + free(ClassIdx); + info("1"); + free(A); + info("2"); + free(B); + info("3"); + free(Omega); + info("4"); + free(ZV); + info("5"); + free(ZAZ); + info("6"); + free(ZAZV); + info("7"); + free(ZAZVT); + info("8"); + info(" stuff free.\n"); + +} + +void step_doubling(struct Model *model) +{ + long i, j; + + long m = model->m; + long K = model->K; + + for (i=0; i<m+1; i++) { + for (j=0; j<K-1; j++) { + matrix_mult(model->V, K-1, i, j, 2.0); + matrix_add(model->V, K-1, i, j, -matrix_get(model->Vbar, K-1, i, j)); + } + } +} + +int dposv(char UPLO, int N, int NRHS, double *A, int LDA, double *B, + int LDB) +{ + extern void dposv_(char *UPLO, int *Np, int *NRHSp, double *A, + int *LDAp, double *B, int *LDBp, int *INFOp); + int INFO; + dposv_(&UPLO, &N, &NRHS, A, &LDA, B, &LDB, &INFO); + return INFO; +} + +int dsysv(char UPLO, int N, int NRHS, double *A, int LDA, int *IPIV, + double *B, int LDB, double *WORK, int LWORK) +{ + extern void dsysv_(char *UPLO, int *Np, int *NRHSp, double *A, + int *LDAp, int *IPIV, double *B, int *LDBp, + double *WORK, int *LWORK, int *INFOp); + int INFO; + dsysv_(&UPLO, &N, &NRHS, A, &LDA, IPIV, B, &LDB, WORK, &LWORK, &INFO); + return INFO; +} + +void msvmmaj_update(struct Model *model, struct Data *data, + int *ClassIdx, double *A, double *B, double *Omega, + double *ZAZ, double *ZAZV, double *ZAZVT) +{ + // Because msvmmaj_update is always called after a call to + // get_msvmmaj_loss with the latest V, it is unnecessary to recalculate + // the matrix ZV, the errors Q and the Huber errors H. Awesome! + int status; + long i, j, k; + double Avalue, Bvalue; + double omega, value, a, b, q, h, r; + + long n = model->n; + long m = model->m; + long K = model->K; + + double kappa = model->kappa; + double p = model->p; + double *rho = model->rho; + + const double a2g2 = 0.25*p*(2.0*p - 1.0)*pow((kappa+1.0)/2.0,p-2.0); + const double in = 1.0/((double) n); + + //info("\tCalculating class idx and omega ... "); + for (i=0; i<n; i++) { + value = 0; + omega = 0; + for (j=0; j<K; j++) { + h = matrix_get(model->H, K, i, j); + r = matrix_get(model->R, K, i, j); + value += (h*r > 0) ? 1 : 0; + omega += pow(h, p)*r; + } + ClassIdx[i] = (value <= 1.0) ? 1 : 0; + Omega[i] = (1.0/p)*pow(omega, 1.0/p - 1.0); + } + + //info("done\n"); + //info("\tCalculating A and B ... "); + + Memset(B, double, n*(K-1)); + for (i=0; i<n; i++) { + Avalue = 0; + if (ClassIdx[i] == 1) { + for (j=0; j<K; j++) { + q = matrix_get(model->Q, K, i, j); + if (q < -kappa) { + a = 0.25/(0.5 - kappa/2.0 - q); + b = 0.5; + } else if (q <= 1.0) { + a = 1.0/(2.0*kappa + 2.0); + b = (1.0 - q)*a; + } else { + a = -0.25/(0.5 - kappa/2.0 - q); + b = 0; + } + for (k=0; k<K-1; k++) { + Bvalue = in*rho[i]*b*matrix3_get(model->UU, K-1, K, i, k, j); + matrix_add(B, K-1, i, k, Bvalue); + } + Avalue += a*matrix_get(model->R, K, i, j); + } + } else { + if (2.0 - p < 0.0001) { + for (j=0; j<K; j++) { + q = matrix_get(model->Q, K, i, j); + if (q < -kappa) { + b = 0.5*p*pow(0.5 - kappa/2.0 - q, p-1.0); + } else if ( q <= 1.0) { + b = pow(1.0 - q, 3.0)/pow(2.0*kappa + 2.0, 2.0); + } else { + b = 0; + } + for (k=0; k<K-1; k++) { + Bvalue = in*rho[i]*Omega[i]*b*matrix3_get(model->UU, K-1, K, i, k, j); + matrix_add(B, K-1, i, k, Bvalue); + } + } + Avalue = 1.5*(K - 1.0); + } else { + for (j=0; j<K; j++) { + q = matrix_get(model->Q, K, i, j); + if (q < -kappa) { + a = 0.25*pow(p, 2.0)*pow(0.5 - kappa/2.0 - q, p - 2.0); + b = 0.5*p*pow(0.5 - kappa/2.0 - q, p - 1.0); + } else if ( q <= 1.0) { + a = a2g2; + b = p*pow(1.0 - q, 2.0*p - 1.0)/pow(2*kappa+2.0, p); + } else { + a = 0.25*pow(p, 2.0)*pow((p/(p - 2.0))*(0.5 - kappa/2.0 - q),p - 2.0); + b = a*(2.0*q + kappa - 1.0)/(p - 2.0) + 0.5*p*pow((p/(p - 2.0))*(0.5 - kappa/2.0 - q), p - 1.0); + } + for (k=0; k<K-1; k++) { + Bvalue = in*rho[i]*Omega[i]*b*matrix3_get(model->UU, K-1, K, i, k, j); + matrix_add(B, K-1, i, k, Bvalue); + } + Avalue += a*matrix_get(model->R, K, i, j); + } + } + Avalue *= Omega[i]; + } + A[i] = in*rho[i]*Avalue; + } + + //print_matrix(ZAZ, m+1, m+1); + //info("done\n"); + //info("\tCalculating ZAZ ... "); + // Now we calculate the matrix ZAZ. Since this is + // guaranteed to be symmetric, we only calculate the + // upper part of the matrix, and then copy this over + // to the lower part after all calculations are done. + // Note that the use of dsym is faster than dspr, even + // though dspr uses less memory. + Memset(ZAZ, double, (m+1)*(m+1)); + for (i=0; i<n; i++) { + cblas_dsyr( + CblasRowMajor, + CblasUpper, + m+1, + A[i], + &data->Z[i*(m+1)], + 1, + ZAZ, + m+1); + } + //print_matrix(ZAZ, m+1, m+1); + + //info("done\n"); + // Copy upper to lower (necessary because we need to switch + // to Col-Major order for LAPACK). + // + // TODO: this needs verification! It might also work without + // this step + for (i=0; i<m+1; i++) + for (j=0; j<m+1; j++) + matrix_set(ZAZ, m+1, j, i, matrix_get(ZAZ, m+1, i, j)); + + info("ZAZ:\n"); + print_matrix(ZAZ, m+1, m+1); + + // Calculate the right hand side of the system we + // want to solve. + //info("\tRunning dsymm ... "); + cblas_dsymm( + CblasRowMajor, + CblasLeft, + CblasUpper, + m+1, + K-1, + 1.0, + ZAZ, + m+1, + model->V, + K-1, + 0.0, + ZAZV, + K-1); + //info("done\n"); + //info("\tRunning dgemm ... "); + cblas_dgemm( + CblasRowMajor, + CblasTrans, + CblasNoTrans, + m+1, + K-1, + n, + 1.0, + data->Z, + m+1, + B, + K-1, + 1.0, + ZAZV, + K-1); + /* + * Add lambda to all diagonal elements except the + * first one. + */ + i = 0; + for (j=0; j<m; j++) + ZAZ[i+=m+1 + 1] += model->lambda; + + // For the LAPACK call we need to switch to Column- + // Major order. This is unnecessary for the matrix + // ZAZ because it is symmetric. The matrix ZAZV + // must be converted however. + for (i=0; i<m+1; i++) + for (j=0; j<K-1; j++) + ZAZVT[j*(m+1)+i] = ZAZV[i*(K-1)+j]; + status = 1; + /* + status = dposv( + 'U', + m+1, + K-1, + ZAZ, + m+1, + ZAZVT, + m+1); + */ + if (status != 0) { + fprintf(stderr, "Received nonzero status from dposv: %i\n", status); + int *IPIV = malloc((m+1)*sizeof(int)); + double *WORK = malloc(1*sizeof(double)); + status = dsysv( + 'U', + m+1, + K-1, + ZAZ, + m+1, + IPIV, + ZAZVT, + m+1, + WORK, + -1); + WORK = (double *)realloc(WORK, WORK[0]*sizeof(double)); + status = dsysv( + 'U', + m+1, + K-1, + ZAZ, + m+1, + IPIV, + ZAZVT, + m+1, + WORK, + sizeof(WORK)/sizeof(double)); + if (status != 0) + fprintf(stderr, "Received nonzero status from dsysv: %i\n", status); + + } + for (i=0; i<m+1; i++) + for (j=0; j<K-1; j++) + ZAZV[i*(K-1)+j] = ZAZVT[j*(m+1)+i]; + + // Store the previous V in Vbar, assign the new V + // (which is stored in ZAZVT) to the model, and give ZAZVT the + // address of Vbar. This should ensure that we keep + // re-using assigned memory instead of reallocating at every + // update. + /* See this answer: http://stackoverflow.com/q/13246615/ + * For now we'll just do it by value until the rest is figured out. + ptr = model->Vbar; + model->Vbar = model->V; + model->V = ZAZVT; + ZAZVT = ptr; + */ + + for (i=0; i<m+1; i++) { + for (j=0; j<K-1; j++) { + value = matrix_get(model->Vbar, K-1, i, j); + matrix_set(model->Vbar, K-1, i, j, matrix_get(model->V, K-1, i, j)); + matrix_set(model->V, K-1, i, j, matrix_get(ZAZV, K-1, i, j)); + matrix_set(ZAZV, K-1, i, j, value); + } + } + +} + + +void initialize_weights(struct Data *data, struct Model *model) +{ + int *groups; + long i; + + long n = model->n; + long K = model->K; + + if (model->weight_idx == 1) { + for (i=0; i<n; i++) + model->rho[i] = 1.0; + } + else if (model->weight_idx == 2) { + groups = Malloc(int, K); + for (i=0; i<n; i++) { + groups[data->y[i]-1]++; + } + for (i=0; i<n; i++) { + model->rho[i] = 1.0/((double) groups[data->y[i]-1]); + } + } else { + fprintf(stderr, "Unknown weight specification.\n"); + exit(1); + } +} + |
