diff options
| author | Gertjan van den Burg <burg@ese.eur.nl> | 2016-10-17 13:44:54 +0200 |
|---|---|---|
| committer | Gertjan van den Burg <burg@ese.eur.nl> | 2016-10-17 13:44:54 +0200 |
| commit | cc40bb91ce4509a177a729e58cb78afe5ca0dfb0 (patch) | |
| tree | 032dbb51706af2e2d47f645f3a479d2106bf0780 /src/gensvm_predict.c | |
| parent | Update predictions to work with sparse matrices (diff) | |
| download | gensvm-cc40bb91ce4509a177a729e58cb78afe5ca0dfb0.tar.gz gensvm-cc40bb91ce4509a177a729e58cb78afe5ca0dfb0.zip | |
refactor gensvm_pred to gensvm_predict
Diffstat (limited to 'src/gensvm_predict.c')
| -rw-r--r-- | src/gensvm_predict.c | 99 |
1 files changed, 99 insertions, 0 deletions
diff --git a/src/gensvm_predict.c b/src/gensvm_predict.c new file mode 100644 index 0000000..1112e55 --- /dev/null +++ b/src/gensvm_predict.c @@ -0,0 +1,99 @@ +/** + * @file gensvm_pred.c + * @author Gertjan van den Burg + * @date August 9, 2013 + * @brief Main functions for predicting class labels.. + * + * @details + * This file contains functions for predicting the class labels of instances + * and a function for calculating the predictive performance (hitrate) of + * a prediction given true class labels. + * + */ + +#include "gensvm_predict.h" + +/** + * @brief Predict class labels of data given and output in predy + * + * @details + * The labels are predicted by mapping each instance in data to the + * simplex space using the matrix V in the given model. Next, for each + * instance the nearest simplex vertex is determined using an Euclidean + * norm. The nearest simplex vertex determines the predicted class label, + * which is recorded in predy. + * + * @param[in] testdata GenData to predict labels for + * @param[in] model GenModel with optimized V + * @param[out] predy pre-allocated vector to record predictions in + */ +void gensvm_predict_labels(struct GenData *testdata, struct GenModel *model, + long *predy) +{ + long i, j, k, n, K, label; + double norm, min_dist, + *S = NULL, + *ZV = NULL; + + n = testdata->n; + K = model->K; + + // allocate necessary memory + S = Calloc(double, K-1); + ZV = Calloc(double, n*(K-1)); + + // Generate the simplex matrix + gensvm_simplex(model); + + // Generate the simplex space vectors + gensvm_calculate_ZV(model, testdata, ZV); + + // Calculate the distance to each of the vertices of the simplex. + // The closest vertex defines the class label + for (i=0; i<n; i++) { + label = 0; + min_dist = INFINITY; + for (j=0; j<K; j++) { + for (k=0; k<K-1; k++) { + S[k] = matrix_get(ZV, K-1, i, k) - + matrix_get(model->U, K-1, j, k); + } + norm = cblas_dnrm2(K-1, S, 1); + if (norm < min_dist) { + label = j+1; + min_dist = norm; + } + } + predy[i] = label; + } + + free(ZV); + free(S); +} + +/** + * @brief Calculate the predictive performance (percentage correct) + * + * @details + * The predictive performance is calculated by simply counting the number + * of correctly classified samples and dividing by the total number of + * samples, multiplying by 100. + * + * @param[in] data the GenData dataset with known labels + * @param[in] predy the predicted class labels + * + * @returns percentage correctly classified. + */ +double gensvm_prediction_perf(struct GenData *data, long *predy) +{ + long i, correct = 0; + double performance; + + for (i=0; i<data->n; i++) + if (data->y[i] == predy[i]) + correct++; + + performance = ((double) correct)/((double) data->n)* 100.0; + + return performance; +} |
