diff options
| author | Gertjan van den Burg <burg@ese.eur.nl> | 2016-10-17 13:41:46 +0200 |
|---|---|---|
| committer | Gertjan van den Burg <burg@ese.eur.nl> | 2016-10-17 13:41:46 +0200 |
| commit | e2c0ca1c082bfd7755c7af5bc5c9021bce64f3ba (patch) | |
| tree | 3564a0b9ed66ccf71d16bf54a304aad320876bbf /src/gensvm_pred.c | |
| parent | update doxyfile (diff) | |
| download | gensvm-e2c0ca1c082bfd7755c7af5bc5c9021bce64f3ba.tar.gz gensvm-e2c0ca1c082bfd7755c7af5bc5c9021bce64f3ba.zip | |
Update predictions to work with sparse matrices
This is done by pulling the Z*V routines from the gensvm_optimize file
to a seperate file, since they are shared by prediction and get_loss
Diffstat (limited to 'src/gensvm_pred.c')
| -rw-r--r-- | src/gensvm_pred.c | 19 |
1 files changed, 2 insertions, 17 deletions
diff --git a/src/gensvm_pred.c b/src/gensvm_pred.c index afa1ab9..31b591c 100644 --- a/src/gensvm_pred.c +++ b/src/gensvm_pred.c @@ -30,13 +30,12 @@ void gensvm_predict_labels(struct GenData *testdata, struct GenModel *model, long *predy) { - long i, j, k, n, m, K, label; + long i, j, k, n, K, label; double norm, min_dist, *S = NULL, *ZV = NULL; n = testdata->n; - m = testdata->r; K = model->K; // allocate necessary memory @@ -47,21 +46,7 @@ void gensvm_predict_labels(struct GenData *testdata, struct GenModel *model, gensvm_simplex(model); // Generate the simplex space vectors - cblas_dgemm( - CblasRowMajor, - CblasNoTrans, - CblasNoTrans, - n, - K-1, - m+1, - 1.0, - testdata->Z, - m+1, - model->V, - K-1, - 0.0, - ZV, - K-1); + gensvm_calculate_ZV(model, testdata, ZV); // Calculate the distance to each of the vertices of the simplex. // The closest vertex defines the class label |
