diff options
| author | Gertjan van den Burg <burg@ese.eur.nl> | 2016-10-17 13:41:46 +0200 |
|---|---|---|
| committer | Gertjan van den Burg <burg@ese.eur.nl> | 2016-10-17 13:41:46 +0200 |
| commit | e2c0ca1c082bfd7755c7af5bc5c9021bce64f3ba (patch) | |
| tree | 3564a0b9ed66ccf71d16bf54a304aad320876bbf /src/gensvm_optimize.c | |
| parent | update doxyfile (diff) | |
| download | gensvm-e2c0ca1c082bfd7755c7af5bc5c9021bce64f3ba.tar.gz gensvm-e2c0ca1c082bfd7755c7af5bc5c9021bce64f3ba.zip | |
Update predictions to work with sparse matrices
This is done by pulling the Z*V routines from the gensvm_optimize file
to a seperate file, since they are shared by prediction and get_loss
Diffstat (limited to 'src/gensvm_optimize.c')
| -rw-r--r-- | src/gensvm_optimize.c | 43 |
1 files changed, 1 insertions, 42 deletions
diff --git a/src/gensvm_optimize.c b/src/gensvm_optimize.c index e83fa47..300df40 100644 --- a/src/gensvm_optimize.c +++ b/src/gensvm_optimize.c @@ -257,10 +257,7 @@ void gensvm_calculate_errors(struct GenModel *model, struct GenData *data, long n = model->n; long K = model->K; - if (data->spZ == NULL) - gensvm_calculate_ZV_dense(model, data, ZV); - else - gensvm_calculate_ZV_sparse(model, data, ZV); + gensvm_calculate_ZV(model, data, ZV); for (i=0; i<n; i++) { for (j=0; j<K; j++) { @@ -273,41 +270,3 @@ void gensvm_calculate_errors(struct GenModel *model, struct GenData *data, } } -void gensvm_calculate_ZV_sparse(struct GenModel *model, - struct GenData *data, double *ZV) -{ - long i, j, jj, jj_start, jj_end, K, - n_row = data->spZ->n_row; - double z_ij; - - K = model->K; - - int *Zia = data->spZ->ia; - int *Zja = data->spZ->ja; - double *vals = data->spZ->values; - - for (i=0; i<n_row; i++) { - jj_start = Zia[i]; - jj_end = Zia[i+1]; - - for (jj=jj_start; jj<jj_end; jj++) { - j = Zja[jj]; - z_ij = vals[jj]; - - cblas_daxpy(K-1, z_ij, &model->V[j*(K-1)], 1, - &ZV[i*(K-1)], 1); - } - } -} - -void gensvm_calculate_ZV_dense(struct GenModel *model, - struct GenData *data, double *ZV) -{ - long n = model->n; - long m = model->m; - long K = model->K; - - cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, n, K-1, m+1, - 1.0, data->Z, m+1, model->V, K-1, 0, ZV, K-1); -} - |
