diff options
| author | Gertjan van den Burg <burg@ese.eur.nl> | 2014-08-25 14:38:03 +0200 |
|---|---|---|
| committer | Gertjan van den Burg <burg@ese.eur.nl> | 2014-08-25 14:38:03 +0200 |
| commit | 1e340d509f229120eb3aaa98c91028dc3c0d3305 (patch) | |
| tree | dd6b65c428447f179133e967eb0e0d3ce15f68ec /include/msvmmaj.h | |
| parent | free some work arrays (diff) | |
| download | gensvm-1e340d509f229120eb3aaa98c91028dc3c0d3305.tar.gz gensvm-1e340d509f229120eb3aaa98c91028dc3c0d3305.zip | |
rename msvmmaj to gensvm
Diffstat (limited to 'include/msvmmaj.h')
| -rw-r--r-- | include/msvmmaj.h | 99 |
1 files changed, 0 insertions, 99 deletions
diff --git a/include/msvmmaj.h b/include/msvmmaj.h deleted file mode 100644 index 3d04f30..0000000 --- a/include/msvmmaj.h +++ /dev/null @@ -1,99 +0,0 @@ -/** - * @file msvmmaj.h - * @author Gertjan van den Burg - * @date August, 2013 - * @brief Definitions for common structures - * - * @details - * Contains documentation and declarations of MajModel and MajData. - * - */ - -#ifndef MSVMMAJ_H -#define MSVMMAJ_H - -#include "globals.h" -#include "types.h" - -/** - * @brief A structure to represent a single MSVMMaj model. - * - * @param weight_idx which weights to use (1 = unit, 2 = group) - * @param K number of classes in the dataset - * @param n number of instances in the dataset - * @param m number of predictors in the dataset - * @param epsilon stopping criterion - * @param p parameter for the L_p norm - * @param kappa parameter for the Huber hinge - * @param lambda regularization parameter - * @param *W pointer to the weight matrix - * @param *t pointer to the translation vector - * @param *V pointer to the augmented weight matrix - * @param *Vbar pointer to the augmented weight matrix from a - * previous iteration - * @param *U pointer to the simplex matrix - * @param *UU pointer to the 3D simplex difference matrix - * @param *Q pointer to the error matrix - * @param *H pointer to the Huber weighted error matrix - * @param *R pointer to the 0-1 auxiliary matrix - * @param *rho pointer to the instance weight vector - * @param training_error error after training has completed - * @param *data_file pointer to the filename of the data - * @param kerneltype kernel to be used in the model - * @param kernelparam pointer to the vector of kernel parameters - * - * @TODO - * change R to int, it's a binary matrix - */ -struct MajModel { - int weight_idx; - long K; - long n; - long m; - double epsilon; - double p; - double kappa; - double lambda; - double *W; - double *t; - double *V; - double *Vbar; - double *U; - double *UU; - double *Q; - double *H; - double *R; - double *rho; - double training_error; - char *data_file; - KernelType kerneltype; - double *kernelparam; -}; - -/** - * @brief A structure to represent the data. - * - * @param K number of classes - * @param n number of instances - * @param m number of predictors - * @param *y pointer to vector of class labels - * @param *Z pointer to augmented data matrix - * @param *RAW pointer to augmented raw data matrix - * @param *J pointer to regularization vector - * @param kerneltype kerneltype used in MajData::Z - * @param *kernelparam kernel parameters used in MajData::Z - * - */ -struct MajData { - long K; - long n; - long m; - long *y; - double *Z; - double *RAW; - double *J; - KernelType kerneltype; - double *kernelparam; -}; - -#endif |
