aboutsummaryrefslogtreecommitdiff
path: root/include/msvmmaj.h
diff options
context:
space:
mode:
authorGertjan van den Burg <burg@ese.eur.nl>2014-08-25 14:38:03 +0200
committerGertjan van den Burg <burg@ese.eur.nl>2014-08-25 14:38:03 +0200
commit1e340d509f229120eb3aaa98c91028dc3c0d3305 (patch)
treedd6b65c428447f179133e967eb0e0d3ce15f68ec /include/msvmmaj.h
parentfree some work arrays (diff)
downloadgensvm-1e340d509f229120eb3aaa98c91028dc3c0d3305.tar.gz
gensvm-1e340d509f229120eb3aaa98c91028dc3c0d3305.zip
rename msvmmaj to gensvm
Diffstat (limited to 'include/msvmmaj.h')
-rw-r--r--include/msvmmaj.h99
1 files changed, 0 insertions, 99 deletions
diff --git a/include/msvmmaj.h b/include/msvmmaj.h
deleted file mode 100644
index 3d04f30..0000000
--- a/include/msvmmaj.h
+++ /dev/null
@@ -1,99 +0,0 @@
-/**
- * @file msvmmaj.h
- * @author Gertjan van den Burg
- * @date August, 2013
- * @brief Definitions for common structures
- *
- * @details
- * Contains documentation and declarations of MajModel and MajData.
- *
- */
-
-#ifndef MSVMMAJ_H
-#define MSVMMAJ_H
-
-#include "globals.h"
-#include "types.h"
-
-/**
- * @brief A structure to represent a single MSVMMaj model.
- *
- * @param weight_idx which weights to use (1 = unit, 2 = group)
- * @param K number of classes in the dataset
- * @param n number of instances in the dataset
- * @param m number of predictors in the dataset
- * @param epsilon stopping criterion
- * @param p parameter for the L_p norm
- * @param kappa parameter for the Huber hinge
- * @param lambda regularization parameter
- * @param *W pointer to the weight matrix
- * @param *t pointer to the translation vector
- * @param *V pointer to the augmented weight matrix
- * @param *Vbar pointer to the augmented weight matrix from a
- * previous iteration
- * @param *U pointer to the simplex matrix
- * @param *UU pointer to the 3D simplex difference matrix
- * @param *Q pointer to the error matrix
- * @param *H pointer to the Huber weighted error matrix
- * @param *R pointer to the 0-1 auxiliary matrix
- * @param *rho pointer to the instance weight vector
- * @param training_error error after training has completed
- * @param *data_file pointer to the filename of the data
- * @param kerneltype kernel to be used in the model
- * @param kernelparam pointer to the vector of kernel parameters
- *
- * @TODO
- * change R to int, it's a binary matrix
- */
-struct MajModel {
- int weight_idx;
- long K;
- long n;
- long m;
- double epsilon;
- double p;
- double kappa;
- double lambda;
- double *W;
- double *t;
- double *V;
- double *Vbar;
- double *U;
- double *UU;
- double *Q;
- double *H;
- double *R;
- double *rho;
- double training_error;
- char *data_file;
- KernelType kerneltype;
- double *kernelparam;
-};
-
-/**
- * @brief A structure to represent the data.
- *
- * @param K number of classes
- * @param n number of instances
- * @param m number of predictors
- * @param *y pointer to vector of class labels
- * @param *Z pointer to augmented data matrix
- * @param *RAW pointer to augmented raw data matrix
- * @param *J pointer to regularization vector
- * @param kerneltype kerneltype used in MajData::Z
- * @param *kernelparam kernel parameters used in MajData::Z
- *
- */
-struct MajData {
- long K;
- long n;
- long m;
- long *y;
- double *Z;
- double *RAW;
- double *J;
- KernelType kerneltype;
- double *kernelparam;
-};
-
-#endif