1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
#' ---
#' title: Utilities shared between R code
#' author: G.J.J. van den Burg
#' date: 2019-09-29
#' license: See the LICENSE file.
#' copyright: 2019, The Alan Turing Institute
#' ---
library(RJSONIO)
printf <- function(...) invisible(cat(sprintf(...)));
load.dataset <- function(filename)
{
data <- fromJSON(filename)
# reformat the data to a data frame with a time index and the data values
tidx <- data$time$index
exp <- 0:(data$n_obs - 1)
if (all(tidx == exp) && length(tidx) == length(exp)) {
tidx <- NULL
} else {
tidx <- data$time$index
}
mat <- NULL
for (j in 1:data$n_dim) {
s <- data$series[[j]]
v <- NULL
for (i in 1:data$n_obs) {
val <- s$raw[[i]]
if (is.null(val)) {
v <- c(v, NA)
} else {
v <- c(v, val)
}
}
mat <- cbind(mat, v)
}
# We normalize to avoid issues with numerical precision.
mat <- scale(mat)
out <- list(original=data,
time=tidx,
mat=mat)
return(out)
}
prepare.result <- function(data, data.filename, status, error,
params, locations, runtime) {
out <- list(error=NULL)
cmd.args <- commandArgs(trailingOnly=F)
# the full command used
out$command <- paste(cmd.args, collapse=' ')
# get the name of the current script
file.arg <- "--file="
out$script <- sub(file.arg, "", cmd.args[grep(file.arg, cmd.args)])
# hash of the script
script.hash <- tools::md5sum(out$script)
names(script.hash) <- NULL
out$script_md5 <- script.hash
# hostname of the machine
hostname <- Sys.info()['nodename']
names(hostname) <- NULL
out$hostname <- hostname
# dataset name
out$dataset <- data$name
# dataset hash
data.hash <- tools::md5sum(data.filename)
names(data.hash) <- NULL
out$dataset_md5 <- data.hash
# status of running the script
out$status <- status
# error (if any)
if (!is.null(error))
out$error <- error
# parameters used
out$parameters <- params
# result
out$result <- list(cplocations=locations, runtime=runtime)
return(out)
}
make.param.list <- function(args, defaults)
{
params <- defaults
args.copy <- args
args.copy['input'] <- NULL
args.copy['output'] <- NULL
params <- modifyList(params, args.copy)
return(params)
}
dump.output <- function(out, filename) {
json.out <- toJSON(out, pretty=T)
if (!is.null(filename))
write(json.out, filename)
else
cat(json.out, '\n')
}
exit.error.multidim <- function(data, args, params) {
status = 'SKIP'
error = 'This method has no support for multidimensional data.'
out <- prepare.result(data, args$input, status, error, params, NULL, NA)
dump.output(out, args$output)
quit(save='no')
}
exit.with.error <- function(data, args, params, error) {
status = 'FAIL'
out <- prepare.result(data, args$input, status, error, params, NULL, NULL)
dump.output(out, args$output)
quit(save='no')
}
exit.success <- function(data, args, params, locations, runtime) {
status = 'SUCCESS'
error = NULL
out <- prepare.result(data, args$input, status, error, params, locations,
runtime)
dump.output(out, args$output)
}
|