1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
#' ---
#' title: Wrapper for ocp package in TCPDBench
#' author: G.J.J. van den Burg
#' date: 2019-10-05
#' license: See the LICENSE file.
#' copyright: 2019, The Alan Turing Institute
#' ---
library(argparse)
library(ocp)
load.utils <- function() {
# get the name of the current script so we can load utils.R (yay, R!)
cmd.args <- commandArgs(trailingOnly=F)
file.arg <- "--file="
this.script <- sub(file.arg, "", cmd.args[grep(file.arg, cmd.args)])
this.dir <- dirname(this.script)
utils.script <- file.path(this.dir, 'utils.R')
source(utils.script)
}
parse.args <- function() {
parser <- ArgumentParser(description='Wrapper for changepoint package')
parser$add_argument('-i',
'--input',
help='path to the input data file',
required=TRUE
)
parser$add_argument('-o',
'--output',
help='path to the output file')
parser$add_argument('-l',
'--lambda',
help='lambda parameter for constant hazard function',
type='integer',
default=100
)
parser$add_argument('--prior-a',
help='Prior alpha for student-t',
type='double',
default=1)
parser$add_argument('--prior-b',
help='Prior beta for student-t',
type='double',
default=1
)
parser$add_argument('--prior-k',
help='Prior kappa for student-t',
type='double',
default=1
)
return(parser$parse_args())
}
main <- function()
{
args <- parse.args()
data <- load.dataset(args$input)
# set the defaults that we don't change
defaults <- list(missPts="none",
cpthreshold=0.5, # unused by us
truncRlim=10^(-4),
minRlength=1,
maxRlength=10^4, # bigger than any of our datasets
minsep=1,
maxsep=10^4 # bigger than any of our datasets
)
defaults$multivariate = data$original$n_dim > 1
# combine defaults and cmd args
params <- make.param.list(args, defaults)
# define our hazard function with the lambda in the parameters
hazard_func <- function(x, lambda) {
const_hazard(x, lambda=params$lambda)
}
# we only use the gaussian model since the data is scaled
model.params <- list(list(m=0, k=params$prior_k, a=params$prior_a,
b=params$prior_b))
start.time <- Sys.time()
result <- tryCatch({
fit <- onlineCPD(data$mat, oCPD=NULL, missPts=params$missPts,
hazard_func=hazard_func,
probModel=list("gaussian"),
init_params=model.params,
multivariate=params$multivariate,
cpthreshold=params$cpthreshold,
truncRlim=params$truncRlim,
minRlength=params$minRlength,
maxRlength=params$maxRlength,
minsep=params$minsep,
maxsep=params$maxsep
)
locs <- as.vector(fit$changepoint_lists$maxCPs[[1]])
list(locations=locs, error=NULL)
}, error=function(e) {
return(list(locations=NULL, error=e$message))
})
stop.time <- Sys.time()
runtime <- difftime(stop.time, start.time, units="secs")
if (!is.null(result$error))
exit.with.error(data$original, args, params, result$error)
# convert indices to 0-based indices
locations <- as.list(result$locations - 1)
exit.success(data$original, args, params, locations, runtime)
}
load.utils()
main()
|